Sains Malaysiana 48(8)(2019):
1697–1706
http://dx.doi.org/10.17576/jsm-2019-4808-15
An in vitro Three-Dimensional
Co-Culture System for Ameloblastoma Modelling
(Sistem Ko-Kultur Tiga
Dimensi secara in vitro untuk Pemodelan Ameloblastoma)
SOO LENG LEE1*, ZAINAL ARIFF ABDUL RAHMAN1, HIDETSUGU TSUJIGIWA2, MEI HAMADA3, KIYOFUMI TAKABATAKE3, KEISUKE NAKANO3, HITOSHI NAGATSUKA3 & CHONG HUAT SIAR1
1Department
of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University
of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Laboratory
of Histopathology, Department of Life Science, Faculty of Science, Okayama
University of Science, Okayama, Japan
3Department
of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical
Sciences, Okayama University, Okayama, Japan
Received: 18
September 2018/Accepted: 16 May 2019
ABSTRACT
Ameloblastoma, the most
clinically significant odontogenic epithelial tumor, is a locally-invasive and
destructive lesion in the jawbones. However, the nature of this
infiltrativeness and destructive behavior remains ill-understood. To address
this, we established an in vitro three-dimensional
(3D) co-culture system to simulate an amelobastoma disease model aimed at
investigating the interactions between tumor cells and osteoblasts.
Osteoblastic cell lines (KUSA/A1 and MC3T3-E1)
and one stromal cell line (ST2) were separately co-seeded with
ameloblastoma-derived cell line (AM-1) in a collagen scaffold
(representing the extracellular bone matrix) and incubated with mineralization
medium. Immunohistochemistry, double immunofluorescence and mineralization
assay were performed. Only AM-1/KUSA-A1
co-culture showed a significant increase in AM-1
cell count, suggesting that heterotypic cell-cell interaction promotes tumoral
cell growth, while formation of visible AM-1 epithelial nest-like
structures resembling ameloblastoma cells in their native state, suggest
morphodifferentiation. A RANK-high, RANKL-low
and osteoprotegerin-low immunoprofile in co-culture AM-1
cells implies deregulated osteoclastogenesis. Mineralization assays showed
diminished calcification in AM-1/KUSA-A1
co-culture extracellular matrix suggesting an altered local bone metabolism. In
contrast, KUSA/A1 monocultures showed abundant extracellular matrix
calcification. Taken together, these results suggest that a 3D co-culture
system as an amelobastoma disease model provides insights that bidirectional
ameloblastoma-osteoblastic interactions might play a role in modulating tumor
growth and osteoclastogenesis.
Keywords: Ameloblast;
ameloblastoma modelling; co-culture system; pre-osteoblast
ABSTRAK
Ameloblastoma, tumor epitelium
odontogenik yang paling umum secara klinikal, ialah lesi invasif
setempat dan lesi memusnah yang didapati di tulang rahang. Walau
bagaimanapun, sifat penyusupan dan perilaku yang merosakkan masih
tidak difahami. Untuk menangani ini, kami menubuhkan satu sistem
in vitro tiga dimensi (3D) untuk mensimulasikan model penyakit
amelobastoma, bertujuan untuk mengkaji interaksi antara tumor dan
sel osteoblastik. Sel-sel osteoblastik (KUSA/A1 dan MC3T3-E1)
dan satu sel stromal (ST2) bersandarkan dengan sel-sel tumor
ameloblastoma, AM-1 secara berasingan dalam gel kolagen
(mewakili matriks tulang ekstraselul) dan diinkubasi dengan medium
pemineralan. Imunohistokimia, imunopendarfluor ganda dua dan asai
mineral dijalankan. Hanya kultivar AM-1/KUSA-A1
menunjukkan kenaikan ketara dalam jumlah sel AM-1,
menunjukkan bahawa interaksi sel heterotip menggalakkan pertumbuhan
sel tumor, manakala pembentukan struktur seperti sarang epitelium
AM-1
kelihatan sebagai sel ameloblastoma dalam keadaan asalnya, mencadangkan
pembezaan morfotip. RANK-Tinggi, RANKL-rendah
dan osteoprotegerin-rendah imunoprofil dalam ko-kultur dengan sel
AM-1
mencadangkan osteoklastogenesis yang tidak terkawal. Pemineralan
asai juga menunjukkan bahawa kalsifikasi dalam matriks ekstrasel
AM-1/KUSA-A1
telah mencadangkan perubahan dalam metabolisme tulang setempat.
Sebaliknya, monokultur KUSA/A1 menunjukkan kalsifikasi matriks ekstrasel yang signifikan.
Secara eksplisit, keputusan ini menunjukkan bahawa sistem ko-kultur
3D sebagai model penyakit amelobastoma memberikan pandangan terperinci
terhadap interaksi antara ameloblastoma dan osteoblas dan keupayaannya
untuk memainkan peranan penting dalam pengubahan pertumbuhan tumor
dan osteoklastogenesis.
Kata kunci: Ameloblas;
pemodelan ameloblastoma; pra-osteoblas; sistem ko-kultur
REFERENCES
Andrade, F.R., Sousa, D.P., Mendonca, E.F., Silva, T.A., Lara,
V.S. & Batista, A.C. 2008. Expression of bone resorption regulators (RANK,
RANKL, and OPG) in odontogenic tumors. Oral Surg. Oral Med. Oral Pathol.
Oral Radiol. Endod. 106(4): 548-55.
Antoni, D., Burckel, H., Josset, E. & Noel, G. 2015.
Three-dimensional cell culture: A breakthrough in vivo. Int. J. Mol. Sci. 16(3):
5517-5527.
Chantravekin, Y. & Koontongkaew, S. 2014. Effects of
ameloblastoma-associated fibroblasts on the proliferation and invasion of tumor
cells. J. Cancer Res. Ther. 10(4): 1082-1087.
da Silva, T.A., Batista, A.C., Mendonca, E.F., Leles, C.R.,
Fukada, S. & Cunha, F.Q. 2008. Comparative expression of RANK, RANKL, and
OPG in keratocystic odontogenic tumors, ameloblastomas, and dentigerous cysts. Oral
Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 105(3): 333-341.
de Matos, F.R., de Moraes, M., das Neves Silva, E.B., Galvao, H.C.
& de Almeida Freitas, R. 2013. Immunohistochemical detection of receptor
activator nuclear kappa B ligand and osteoprotegerin in odontogenic cysts and
tumors. J. Oral Maxillofac. Surg. 71(11): 1886-1892.
Eriksson, T.M., Day, R.M., Fedele, S. & Salih, V.M. 2016. The
regulation of bone turnover in ameloblastoma using an organotypic in vitro co-culture
model. J. Tissue Eng. 7: 2041731416669629.
Fong, E.L., Wan, X., Yang, J., Morgado, M., Mikos, A.G.,
Harrington, D.A., Navone, N.M. & Farach-Carson, M.C. 2016. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled
interrogation of in vivo tumor-stromal interactions. Biomaterials 77:
164-172.
Fuchigami, T., Kibe, T., Koyama, H., Kishida, S., Iijima, M.,
Nishizawa, Y., Hijioka, H., Fujii, T., Ueda, M., Nakamura, N., Kiyono, T. &
Kishida, M. 2014. Regulation of IL-6 and IL-8 production by reciprocal
cell-to-cell interactions between tumor cells and stromal fibroblasts through
IL-1alpha in ameloblastoma. Biochem. Biophys. Res. Commun. 451(4):
491-496.
Harada, H.,
Mitsuyasu, T., Nakamura, N., Higuchi, Y., Toyoshima, K., Taniguchi, A. & Yasumoto,
S. 1998. Establishment of ameloblastoma cell line, AM-1. J. Oral. Pathol.
Med. 27(5): 207-212.
Khosla, S. 2001. Minireview: The OPG/RANKL/RANK system. Endocrinology 142(12): 5050-5055.
Kim,
Y. & Othmer, H.G. 2013. A hybrid model of tumor-stromal interactions in
breast cancer. Bull. Math. Biol. 75(8): 1304- 1350.
Kumamoto,
H. & Ooya, K. 2004. Expression of parathyroid hormone-related protein
(PTHrP), osteoclast differentiation factor (ODF)/receptor activator of nuclear
factor-kappaB ligand (RANKL) and osteoclastogenesis inhibitory factor
(OCIF)/osteoprotegerin (OPG) in ameloblastomas. J. Oral Pathol. Med. 33(1):
46-52.
Liu,
X.Q., Kiefl, R., Roskopf, C., Tian, F. & Huber, R.M. 2016. Interactions
among lung cancer cells, fibroblasts, and macrophages in 3D co-cultures and the
impact on MMP-1 and VEGF expression. PLoS ONE 11(5): e0156268.
Luis-Ravelo,
D., Antón, I., Vicent, S., Hernández, I., Valencia, K., Zandueta, C.,
Martínez-Canarias, Gúrpide, A. & Lecanda, F. 2011. Tumor-stromal
interactions of the bone microenvironment: in vitro findings and
potential in vivo relevance in metastatic lung cancer models. Clinical
& Experimental Metastasis 28(8): 779-791.
Ottewell,
P.D. 2016. The role of osteoblasts in bone metastasis. Journal of Bone
Oncology 5(3): 124-127.
Proff,
P. & Romer, P. 2009. The molecular mechanism behind bone remodelling: A
review. Clin. Oral Investig. 13(4): 355-362.
Qian,
Y. & Huang, H.Z. 2010. The role of RANKL and MMP-9 in the bone resorption
caused by ameloblastoma. J. Oral Pathol. Med. 39(8): 592-598.
Ringer,
E. & Kolokythas, A. 2017. Bone margin analysis for benign odontogenic
tumors. Oral Maxillofac. Surg. Clin. North Am. 29(3): 293-300.
Sandra,
F., Hendarmin, L., Kukita, T., Nakao, Y., Nakamura, N. & Nakamura, S. 2005.
Ameloblastoma induces osteoclastogenesis: A possible role of ameloblastoma in
expanding in the bone. Oral Oncol. 41(6): 637-644.
Sandra,
F., Hendarmin, L. & Nakamura, S. 2006. Osteoprotegerin (OPG) binds with
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): Suppression of
TRAIL-induced apoptosis in ameloblastomas. Oral Oncol. 42(4): 415-420.
Sathi,
G.A., Inoue, M., Harada, H., Rodriguez, A.P., Tamamura, R., Tsujigiwa, H.,
Borkosky, S.S., Gunduz, M. & Nagatsuka, H. 2009. Secreted frizzled related
protein (sFRP)-2 inhibits bone formation and promotes cell proliferation in
ameloblastoma. Oral Oncol. 45(10): 856-860.
Sathi,
G.A., Tsujigiwa, H., Ito, S., Siar, C.H., Katase, N., Tamamura, R., Harada, H.
& Nagatsuka, H. 2012. Osteogenic genes related to the canonic WNT pathway
are down-regulated in ameloblastoma. Oral Surg. Oral Med. Oral Pathol. Oral
Radiol. 114(6): 771-777.
Sathi,
G.S., Nagatsuka, H., Tamamura, R., Fujii, M., Gunduz, M., Inoue, M., Rivera,
R.S. & Nagai, N. 2008. Stromal cells promote bone invasion by suppressing
bone formation in ameloblastoma. Histopathology 53(4): 458-467.
Siar,
C.H. & Ng, K.H. 2014. Differential expression of transcription factors
snail, slug, SIP1, and twist in ameloblastoma. J. Oral Pathol. Med. 43(1):
45-52.
Siar,
C.H., Tsujigiwa, H., Ishak, I., Hussin, N.M., Nagatsuka, H. & Ng, K.H.
2015. RANK, RANKL, and OPG in recurrent solid/multicystic ameloblastoma: Their
distribution patterns and biologic significance. Oral Surg. Oral Med. Oral
Pathol. Oral Radiol. 119(1): 83-91.
Takebe,
Y., Tsujigiwa, H., Katase, N., Siar, C.H., Takabatake, K., Fujii, M., Tamamura,
R., Nakano, K. & Nagatsuka, H. 2017. Parenchyma-stromal interactions induce
fibrosis by secreting CCN2 and promote osteoclastogenesis by stimulating RANKL
and CD68 through activated TGF-beta/BMP4 in ameloblastoma. J. Oral Pathol.
Med. 46(1): 67-75.
Tay,
J.Y., Bay, B.H., Yeo, J.F., Harris, M., Meghji, S. & Dheen, S.T. 2004.
Identification of RANKL in osteolytic lesions of the facial skeleton. J.
Dent. Res. 83(4): 349-353.
Tekkesin,
M.S., Mutlu, S. & Olgac, V. 2011. The role of RANK/ RANKL/OPG signalling
pathways in osteoclastogenesis in odontogenic keratocysts, radicular cysts, and
ameloblastomas. Head and Neck Pathology 5(3): 248-253.
Umezawa,
A., Maruyama, T., Segawa, K., Shadduck, R.K., Waheed, A. & Hata, J.I. 1992.
Multipotent marrow stromal cell line is able to induce hematopoiesis in vivo. J. Cell Physio. 151(1): 197-205.
Vered,
M., Muller, S. & Heikinheimo, K. 2017. Ameloblastoma. In World Health
Organization Classification of Head and Neck Tumours, edited by El-Naggar,
A.K., Chan, J.K.C., Grandis, J.R., Takata, T. & Slootweg, P.J. 4th. Lyon
IARC. pp. 215-218.
Wendler,
F., Stamp, G.W. & Giamas, G. 2016. Tumor-stromal cell communication: Small
vesicles signal big changes. Trends Cancer 2: 326-329.
Wright,
J.M. & Vered, M. 2017. Update from the 4th Edition of the World Health
Organization classification of head and neck tumours: Odontogenic and
maxillofacial bone tumors. Head Neck Pathol. 11(1): 68-77.
*Corresponding author; email:
leng527@siswa.um.edu.my
|