Sains Malaysiana 50(7)(2021): 1935-1946

http://doi.org/10.17576/jsm-2021-5007-09

 

A Preliminary Study on the Impact of UCK2 Knockdown in DLD-1 Colorectal Cells Treated with DHODH Inhibitor

(Kajian Awal ke atas Kesan Penyahfungsian UCK2 di dalam Sel Kolorektum DLD-1 yang Dirawat dengan Perencat DHODH)

 

MOHAMAD FAIRUS ABDUL KADIR1,2, PUTERI SHAFINAZ ABDUL-RAHMAN1, KAVITHA NELLORE3 & SHATRAH OTHMAN1*

 

1Aurigene Discovery Technologies (M) Sdn. Bhd., Level 2, Research Management and Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

3Aurigene Discovery Technologies Limited, 39-40, KIADB Industrial Area, Electronic City Phase II, Hosur Road, Bangalore 560100 Karnataka, India

 

Received: 22 October 2019/Accepted: 17 November 2020

 

ABSTRACT

Brequinar sodium (BQR) is a well-studied inhibitor of the dihydroorotate dehydrogenase (DHODH) enzyme. Both the DHODH and uridine-cytidine kinase 2 (UCK2) enzymes have been reported to be over-expressed in cancer cells to maintain the cells high demand for DNA and RNA for their proliferation. In this study, we aim to further sensitize cells to the effects of BQR by knocking down the UCK2 activity. In DLD-1 UCK2 knockdown cells, no change in the sensitivity of cells to BQR was observed. Uridine is known to reverse the anti-proliferative effect of DHODH inhibitors via the salvage pathway. We observed abrogation of approximately 30% of the uridine reversal effect in UCK2 knockdown cells compared to the wild type cells. Our finding indicates that the loss of UCK2 activity in the salvage pathway did not enhance the BQR-mediated cell proliferation inhibition but it abrogates the uridine reversal in the cells.

 

Keywords: BQR; DHODH; TAS-106; UCK2; uridine abrogation

 

ABSTRAK

Natrium Brequinar (BQR) dikenali sebagai salah satu perencat enzim dihidroorotat dehidrogenase (DHODH). Kedua-dua enzim DHODH dan uridina-sitidina kinase 2 (UCK2) diekspreskan secara berlebihan di dalam sel kanser untuk mengekalkan permintaan tinggi ke atas DNA dan RNA bagi pembahagian sel. Kajian ini bertujuan untuk memekakan sel kanser terhadap BQR dengan menurunkan aktivitiUCK2. Dalam sel rebahUCK2 DLD-1, tiada sebarang perubahan kesensitifan sel terhadap BQR diperhatikan. Uridina telah diketahui dapat membalikkan kesan anti-pembahagian perencat DHODH melalui tapak jalan penyelamatan pirimida. Kami mendapati bahawa pembatalan kesan pembalikan uridina adalah lebih kurang 30% di dalam sel rebah UCK2 berbanding sel jenis liar. Penemuan kami menunjukkan bahawa kehilangan aktivitiUCK2 di dalam laluan penghematan tidak meningkatkan perencatan pembahagian sel berperantarakan BQR tetapi membatalkan pembalikan uridina di dalam sel.

 

Kata kunci: BQR; DHODH; pembatalan uridina; TAS-106; UCK2

 

REFERENCES

Abdelrahim, M., Matsuda, A. & Naing, A. 2013. TAS-106: Preclinical, clinical and beyond. Oncology 85(6): 356-363.

Balague, C., Pont, M., Prats, N. & Godessart, N. 2012. Profiling of dihydroorotate dehydrogenase, p38 and JAK inhibitors in the rat adjuvant-induced arthritis model: A translational study. Br. J. Pharmacol. 166(4): 1320-1332.

Baumgartner, R., Walloschek, M., Kralik, M., Gotschlich, A., Tasler, S., Mies, J. & Leban, J. 2006. Dual binding mode of a novel series of DHODH inhibitors. J. Med. Chem. 49(4): 1239-1247.

Breedveld, F.C. & Dayer, J.M. 2000. Leflunomide: Mode of action in the treatment of rheumatoid arthritis. Ann. Rheum. Dis. 59(11): 841-849.

Davidsson, J., Andersson, A., Paulsson, K., Heidenblad, M., Isaksson, M., Borg, A., Heldrup, J., Behrendtz, M., Panagopoulos, I., Fioretos, T. & Johansson, B. 2007. Tiling resolution array comparative genomic hybridization, expression and methylation analyses of dup(1q) in Burkitt lymphomas and pediatric high hyperdiploid acute lymphoblastic leukemias reveal clustered near-centromeric breakpoints and overexpression of genes in 1q22-32.3. Hum. Mol. Genet 16(18): 2215-2225.

Dorasamy, M.S., Choudhary, B., Nellore, K., Subramanya, H. & Wong, P.F. 2017. Dihydroorotate dehydrogenase inhibitors target c-myc and arrest melanoma, myeloma and lymphoma cells at S-phase. J. Cancer 8(15): 3086-3098.

Dorsett, Y. & Tuschl, T. 2004. siRNAs: Applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 3(4): 318-329.

Fairus, A.K.M., Othman, S. & Nellore, K. 2020. Dihydroorotate dehydrogenase inhibitors promote cell cycle arrest and disrupt mitochondria bioenergetics in ramos cells. Curr. Pharm. Biotechnol. 21(12): 1654-1665.

Fairus, A.K.M., Choudhary, B., Hosahalli, S., Kavitha, N. & Shatrah, O. 2017. Dihydroorotate dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells. Biochimie 135: 154-163.

Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C. & Parkin, D.M. 2010. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127(12): 2893-2917.

Galmarini, C.M., Mackey, J.R. & Dumontet, C. 2001. Nucleoside analogues: Mechanisms of drug resistance and reversal strategies. Leukemia 15(6): 875-890.

Gattermann, N., Dadak, M., Hofhaus, G., Wulfert, M., Berneburg, M., Loeffler, M.L. & Simmonds, H.A. 2004. Severe impairment of nucleotide synthesis through inhibition of mitochondrial respiration. Nucleos. Nucleot. Nucl. 23(8-9): 1275-1279.

Geng, F., Wang, Z., Yin, H., Yu, J. & Cao, B. 2017. Molecular targeted drugs and treatment of colorectal cancer: Recent progress and future perspectives. Cancer Biother. Radiopharm. 32(5): 149-160.

Hoffmann, H.H., Kunz, A., Simon, V.A., Palese, P. & Shaw, M.L. 2011. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc. Natl. Acad. Sci. 108(14): 5777-5782.

Hong, S.W., Jiang, Y., Kim, S., Li, C. & Lee, D.K. 2014. Target gene abundance contributes to the efficiency of siRNA-mediated gene silencing. Nucleic Acid Ther. 24(3): 192-198.

Katahira, R. & Ashihara, H. 2002. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Planta 215(5): 821-828.

Kazuno, H., Shimamoto, Y., Tsujimoto, H., Fukushima, M., Matsuda, A. & Sasaki, T. 2007. Mechanism of action of a new antitumor ribonucleoside, 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd, TAS-106), differs from that of 5-fluorouracil. Oncol. Rep. 17(6): 1453-1460.

Kuilenburg, A.B.P.V. & Meinsma, R. 2016. The pivotal role of uridine-cytidine kinases in pyrimidine metabolism and activation of cytotoxic nucleoside analogues in neuroblastoma. Biochim. Biophysic. Acta (BBA) - Mol. Basis of Dis. 1862(9): 1504-1512.

Le, T.T., Ziemba, A., Urasaki, Y., Hayes, E., Brotman, S. & Pizzorno, G. 2013. Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation. J. Lipid Res. 54(4): 1044-1057.

Lolli, M.L., Sainas, S., Pippione, A.C., Giorgis, M., Boschi, D. & Dosio, F. 2018. Use of human dihydroorotate dehydrogenase (hDHODH) inhibitors in autoimmune diseases and new perspectives in cancer therapy. Recent Pat. Anticancer Drug Discov. 13(1): 86-105.

Matsuda, A. & Sasaki, T. 2004. Antitumor activity of sugar-modified cytosine nucleosides. Cancer Sci. 95(2): 105-111.

Matsuda, A., Fukushima, M., Wataya, Y. & Sasaki, T. 1999. A new antitumor nucleoside, 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd), is a potent inhibitor of RNA synthesis. Nucleos Nucleot 18(4-5): 811-814.

Miyazaki, Y., Inaoka, D.K., Shiba, T., Saimoto, H., Sakura, T., Amalia, E., Kido, Y., Sakai, C., Nakamura, M., Moore, A.L., Harada, S. & Kita, K. 2018. Selective cytotoxicity of dihydroorotate dehydrogenase inhibitors to human cancer cells under hypoxia and nutrient-deprived conditions. Front. Pharmacol.https://doi.org/10.3389/fphar.2018.00997.

Murata, D., Endo, Y., Obata, T., Sakamoto, K., Syouji, Y., Kadohira, M., Matsuda, A. & Sasaki, T. 2004. A crucial role of uridine/cytidine kinase 2 in antitumor activity of 3'-ethynyl nucleosides. Drug Metab. Dispos. 32(10): 1178-1182.

Naito, T., Yokogawa, T., Kim, H.S., Futagami, M., Wataya, Y., Matsuda, A., Fukushima, M., Kitade, Y. & Sasaki, T. 2002. Anticancer mechanisms of 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl) cytosine (ECyd, TAS-106). Nucleic Acids Res. Suppl. 2: 241-242.

Okesli-Armlovich, A., Gupta, A., Jimenez, M., Auld, D., Liu, Q., Bassik, M.C. & Khosla, C. 2019. Discovery of small molecule inhibitors of human uridine-cytidine kinase 2 by high-throughput screening. Bioorganic Med. Chem. Lett. 29(18): 2559-2564.

Okesli, A., Khosla, C. & Bassik, M.C. 2017. Human pyrimidine nucleotide biosynthesis as a target for antiviral chemotherapy. Curr. Opin. Biotechnol. 48: 127-134.

Ortiz-Riaño, E., Ngo, N., Devito, S., Eggink, D., Munger, J., Shaw, M.L., Torre, J.C.D.L. & Martínez-Sobrido, L. 2014. Inhibition of arenavirus by A3, a pyrimidine biosynthesis inhibitor. J. Virol. 88(2): 878-889.

Peters, G.J., Kraal, I. & Pinedo, H.M. 1992. In vitro and in vivo studies on the combination of Brequinar sodium (DUP-785; NSC 368390) with 5-fluorouracil; effects of uridine. Br. J. Cancer 65(2): 229-233.

Sarkisjan, D., Julsing, J.R., Smid, K., Klerk, D.D., Kuilenburg, A.B.P.V., Meinsma, R., Lee, Y.B., Kim, D.J. & Peters, G.J. 2016. The cytidine analog fluorocyclopentenylcytosine (RX-3117) is activated by Uridine-Cytidine Kinase 2. PLoS ONE 11(9): e0162901.

Schröder, M., Giermann, N. & Zrenner, R. 2005. Functional analysis of the pyrimidine de novo synthesis pathway in solanaceous species. Plant Physiol. 138(4): 1926-1938.

Setzer, B., Lebrecht, D. & Walker, U.A. 2008. Pyrimidine nucleoside depletion sensitizes to the mitochondrial hepatotoxicity of the reverse transcriptase inhibitor stavudine. Am. J. Pathol. 172(3): 681-690.

Shimamoto, Y., Kazuno, H., Murakami, Y., Azuma, A., Koizumi, K., Matsuda, A., Sasaki, T. & Fukushima, M. 2002a. Cellular and biochemical mechanisms of the resistance of human cancer cells to a new anticancer ribo-nucleoside, TAS-106. Jpn. J. Cancer Res. 93(4): 445-452.

Shimamoto, Y., Koizumi, K., Okabe, H., Kazuno, H., Murakami, Y., Nakagawa, F., Matsuda, A., Sasaki, T. & Fukushima, M. 2002b. Sensitivity of human cancer cells to the new anticancer ribo‐nucleoside TAS-106 is correlated with expression of Uridine‐cytidine Kinase 2. Jpn. J. Cancer Res. 93(7): 825-833.

Siegel, R.L., Miller, K.D., Fedewa, S.A., Ahnen, D.J., Meester, R.G.S., Barzi, A. & Jemal, A. 2017. Colorectal cancer statistics, 2017. CA. Cancer J. Clin. 67(3): 177-193.

Sykes, D.B., Kfoury, Y.S., Mercier, F.E., Wawer, M.J., Law, J.M., Haynes, M.K., Lewis, T.A., Schajnovitz, A., Jain, E., Lee, D., Meyer, H., Pierce, K.A., Tolliday, N.J., Waller, A., Ferrara, S.J., Eheim, A.L., Stoeckigt, D., Maxcy, K.L., Cobert, J.M., Bachand, J., Szekely, B.A., Mukherjee, S., Sklar, L.A., Kotz, J.D., Clish, C.B., Sadreyev, R.I., Clemons, P.A., Janzer, A., Schreiber, S.L. & Scadden, D.T. 2016. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167(1): 171-186.e15.

Veettil, S.K., Lim, K.G., Chaiyakunapruk, N., Ching, S.M. & Hassan, M.R.A. 2017. Colorectal cancer in Malaysia: Its burden and implications for a multiethnic country. Asian J. Surg. 40(6): 481-489.

Walker, U.A., Auclair, M., Lebrecht, D., Kornprobst, M., Capeau, J. & Caron, M. 2006. Uridine abrogates the adverse effects of antiretroviral pyrimidine analogues on adipose cell functions. Antivir. Ther. 11(1): 25-34.

Wang, Q.Y., Bushell, S., Qing, M., Xu, H.Y., Bonavia, A., Nunes, S., Zhou, J., Poh, M.K., Sessions, P.F.D., Niyomrattanakit, P., Dong, H., Hoffmaster, K., Goh, A., Nilar, S., Schul, W., Jones, S., Kramer, L., Compton, T. & Shi, P.Y. 2011. Inhibition of dengue virus through suppression of host pyrimidine biosynthesis. J. Virol. 85(13): 6548-6556.

Yiu, A.J. & Yiu, C.Y. 2016. Biomarkers in colorectal cancer. Anticancer Res. 36(3): 1093-1102.

Yu, S., Li, X., Guo, X., Zhang, H., Qin, R. & Wang, M. 2019. UCK2 upregulation might serve as an indicator of unfavorable prognosis of hepatocellular carcinoma. IUBMB Life 71(1): 105-112.

Zeng, Z. & Konopleva, M. 2018. Targeting dihydroorotate dehydrogenase in acute myeloid leukemia. Haematologica 103(9): 1415-1417.

 

*Corresponding author; email: shatraho@um.edu.my

     

previous