Sains Malaysiana 50(7)(2021): 1935-1946
http://doi.org/10.17576/jsm-2021-5007-09
A Preliminary Study on the Impact of UCK2 Knockdown in DLD-1 Colorectal Cells Treated with
DHODH Inhibitor
(Kajian Awal ke
atas Kesan Penyahfungsian UCK2 di dalam Sel Kolorektum DLD-1 yang
Dirawat dengan Perencat DHODH)
MOHAMAD FAIRUS ABDUL KADIR1,2,
PUTERI SHAFINAZ ABDUL-RAHMAN1, KAVITHA NELLORE3 &
SHATRAH OTHMAN1*
1Aurigene
Discovery Technologies (M) Sdn. Bhd., Level 2, Research Management and Innovation
Complex, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Department
of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
3Aurigene
Discovery Technologies Limited, 39-40, KIADB Industrial Area, Electronic City Phase II, Hosur Road, Bangalore 560100 Karnataka, India
Received: 22 October 2019/Accepted: 17 November 2020
ABSTRACT
Brequinar sodium (BQR) is a
well-studied inhibitor of the dihydroorotate dehydrogenase (DHODH) enzyme. Both
the DHODH and uridine-cytidine kinase 2 (UCK2) enzymes have been reported to be
over-expressed in cancer cells to maintain the cells high demand for DNA and RNA
for their proliferation. In this study, we aim to further sensitize cells to
the effects of BQR by knocking down the UCK2 activity. In DLD-1 UCK2 knockdown cells, no change in the sensitivity of cells to BQR was observed.
Uridine is known to reverse the anti-proliferative effect of DHODH inhibitors
via the salvage pathway. We observed abrogation of approximately 30% of the
uridine reversal effect in UCK2 knockdown cells compared to the wild type
cells. Our finding indicates that the loss of UCK2 activity in the
salvage pathway did not enhance the BQR-mediated cell proliferation inhibition
but it abrogates the uridine reversal in the cells.
Keywords: BQR; DHODH; TAS-106; UCK2;
uridine abrogation
ABSTRAK
Natrium Brequinar (BQR) dikenali sebagai salah satu perencat enzim dihidroorotat dehidrogenase (DHODH). Kedua-dua enzim DHODH dan uridina-sitidina kinase 2 (UCK2) diekspreskan secara berlebihan di dalam sel kanser untuk mengekalkan permintaan tinggi ke atas DNA dan RNA bagi pembahagian sel. Kajian ini bertujuan untuk memekakan sel kanser terhadap BQR dengan menurunkan aktivitiUCK2. Dalam sel rebahUCK2 DLD-1, tiada sebarang perubahan kesensitifan sel terhadap BQR diperhatikan. Uridina telah diketahui dapat membalikkan kesan anti-pembahagian perencat DHODH melalui tapak jalan penyelamatan pirimida. Kami mendapati bahawa pembatalan kesan pembalikan uridina adalah lebih kurang 30% di dalam sel rebah UCK2 berbanding sel jenis liar. Penemuan kami menunjukkan bahawa kehilangan aktivitiUCK2 di dalam laluan penghematan tidak meningkatkan perencatan pembahagian sel berperantarakan BQR tetapi membatalkan pembalikan uridina di dalam sel.
Kata kunci: BQR; DHODH; pembatalan uridina; TAS-106; UCK2
REFERENCES
Abdelrahim, M., Matsuda, A. & Naing, A. 2013. TAS-106:
Preclinical, clinical and beyond. Oncology 85(6): 356-363.
Balague, C., Pont, M., Prats, N. & Godessart, N. 2012. Profiling of dihydroorotate
dehydrogenase, p38 and JAK inhibitors in the rat adjuvant-induced arthritis
model: A translational study. Br. J.
Pharmacol. 166(4): 1320-1332.
Baumgartner,
R., Walloschek, M., Kralik, M., Gotschlich, A., Tasler, S., Mies, J. &
Leban, J. 2006. Dual binding mode of a novel series of DHODH inhibitors. J.
Med. Chem. 49(4): 1239-1247.
Breedveld, F.C. & Dayer, J.M. 2000. Leflunomide: Mode of
action in the treatment of rheumatoid arthritis. Ann. Rheum. Dis. 59(11): 841-849.
Davidsson, J., Andersson, A., Paulsson, K., Heidenblad, M.,
Isaksson, M., Borg, A., Heldrup, J., Behrendtz, M., Panagopoulos, I., Fioretos,
T. & Johansson, B. 2007. Tiling resolution array comparative genomic
hybridization, expression and methylation analyses of dup(1q) in Burkitt
lymphomas and pediatric high hyperdiploid acute lymphoblastic leukemias reveal
clustered near-centromeric breakpoints and overexpression of genes in
1q22-32.3. Hum. Mol. Genet 16(18):
2215-2225.
Dorasamy, M.S., Choudhary, B., Nellore, K., Subramanya, H.
& Wong, P.F. 2017. Dihydroorotate dehydrogenase inhibitors target c-myc and
arrest melanoma, myeloma and lymphoma cells at S-phase. J. Cancer 8(15): 3086-3098.
Dorsett, Y. & Tuschl, T. 2004. siRNAs: Applications in
functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 3(4): 318-329.
Fairus,
A.K.M., Othman, S. & Nellore, K. 2020. Dihydroorotate dehydrogenase
inhibitors promote cell cycle arrest and disrupt mitochondria bioenergetics in
ramos cells. Curr. Pharm. Biotechnol. 21(12): 1654-1665.
Fairus, A.K.M., Choudhary, B., Hosahalli, S., Kavitha, N.
& Shatrah, O. 2017. Dihydroorotate dehydrogenase (DHODH) inhibitors affect
ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer
cells. Biochimie 135: 154-163.
Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C.
& Parkin, D.M. 2010. Estimates of worldwide burden of cancer in 2008:
GLOBOCAN 2008. Int. J. Cancer 127(12): 2893-2917.
Galmarini, C.M., Mackey, J.R. & Dumontet, C. 2001.
Nucleoside analogues: Mechanisms of drug resistance and reversal strategies. Leukemia 15(6): 875-890.
Gattermann,
N., Dadak, M., Hofhaus, G., Wulfert, M., Berneburg, M., Loeffler, M.L. &
Simmonds, H.A. 2004. Severe impairment of nucleotide synthesis through
inhibition of mitochondrial respiration. Nucleos. Nucleot. Nucl. 23(8-9):
1275-1279.
Geng, F., Wang, Z., Yin, H., Yu, J. & Cao, B. 2017.
Molecular targeted drugs and treatment of colorectal cancer: Recent progress
and future perspectives. Cancer Biother.
Radiopharm. 32(5): 149-160.
Hoffmann, H.H., Kunz, A., Simon, V.A., Palese, P. & Shaw,
M.L. 2011. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc. Natl. Acad. Sci. 108(14): 5777-5782.
Hong, S.W., Jiang, Y., Kim, S., Li, C. & Lee, D.K. 2014.
Target gene abundance contributes to the efficiency of siRNA-mediated gene
silencing. Nucleic Acid Ther. 24(3):
192-198.
Katahira, R. & Ashihara, H. 2002. Profiles of pyrimidine
biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Planta 215(5): 821-828.
Kazuno, H., Shimamoto, Y., Tsujimoto, H., Fukushima, M.,
Matsuda, A. & Sasaki, T. 2007. Mechanism of action of a new antitumor
ribonucleoside, 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd,
TAS-106), differs from that of 5-fluorouracil. Oncol. Rep. 17(6): 1453-1460.
Kuilenburg, A.B.P.V. & Meinsma, R. 2016. The pivotal role
of uridine-cytidine kinases in pyrimidine metabolism and activation of
cytotoxic nucleoside analogues in neuroblastoma. Biochim. Biophysic. Acta (BBA) - Mol. Basis of Dis. 1862(9):
1504-1512.
Le, T.T., Ziemba, A., Urasaki, Y., Hayes, E., Brotman, S.
& Pizzorno, G. 2013. Disruption of uridine homeostasis links liver
pyrimidine metabolism to lipid accumulation. J. Lipid Res. 54(4): 1044-1057.
Lolli, M.L., Sainas, S., Pippione, A.C., Giorgis, M., Boschi,
D. & Dosio, F. 2018. Use of human dihydroorotate dehydrogenase (hDHODH)
inhibitors in autoimmune diseases and new perspectives in cancer therapy. Recent Pat. Anticancer Drug Discov. 13(1): 86-105.
Matsuda, A. & Sasaki, T. 2004. Antitumor activity of
sugar-modified cytosine nucleosides. Cancer
Sci. 95(2): 105-111.
Matsuda, A., Fukushima, M., Wataya, Y. & Sasaki, T. 1999.
A new antitumor nucleoside, 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine
(ECyd), is a potent inhibitor of RNA synthesis. Nucleos Nucleot 18(4-5): 811-814.
Miyazaki, Y., Inaoka, D.K., Shiba, T., Saimoto, H., Sakura,
T., Amalia, E., Kido, Y., Sakai, C., Nakamura, M., Moore, A.L., Harada, S.
& Kita, K. 2018. Selective cytotoxicity of dihydroorotate dehydrogenase
inhibitors to human cancer cells under hypoxia and nutrient-deprived
conditions. Front. Pharmacol.https://doi.org/10.3389/fphar.2018.00997.
Murata, D., Endo, Y., Obata, T., Sakamoto, K., Syouji, Y.,
Kadohira, M., Matsuda, A. & Sasaki, T. 2004. A crucial role of
uridine/cytidine kinase 2 in antitumor activity of 3'-ethynyl nucleosides. Drug Metab. Dispos. 32(10): 1178-1182.
Naito, T., Yokogawa, T., Kim, H.S., Futagami, M., Wataya, Y.,
Matsuda, A., Fukushima, M., Kitade, Y. & Sasaki, T. 2002. Anticancer
mechanisms of 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl) cytosine (ECyd,
TAS-106). Nucleic Acids Res. Suppl. 2: 241-242.
Okesli-Armlovich,
A., Gupta, A., Jimenez, M., Auld, D., Liu, Q., Bassik, M.C. & Khosla, C.
2019. Discovery of small molecule inhibitors of human uridine-cytidine kinase 2
by high-throughput screening. Bioorganic
Med. Chem. Lett. 29(18): 2559-2564.
Okesli, A., Khosla, C. & Bassik, M.C. 2017. Human
pyrimidine nucleotide biosynthesis as a target for antiviral chemotherapy. Curr. Opin. Biotechnol. 48: 127-134.
Ortiz-Riaño, E., Ngo, N., Devito, S., Eggink, D., Munger, J.,
Shaw, M.L., Torre, J.C.D.L. & Martínez-Sobrido, L. 2014. Inhibition of
arenavirus by A3, a pyrimidine biosynthesis inhibitor. J. Virol. 88(2): 878-889.
Peters, G.J., Kraal, I. & Pinedo, H.M. 1992. In vitro and in vivo studies on the combination of Brequinar sodium (DUP-785; NSC
368390) with 5-fluorouracil; effects of uridine. Br. J. Cancer 65(2): 229-233.
Sarkisjan, D., Julsing, J.R., Smid, K., Klerk, D.D.,
Kuilenburg, A.B.P.V., Meinsma, R., Lee, Y.B., Kim, D.J. & Peters, G.J.
2016. The cytidine analog fluorocyclopentenylcytosine (RX-3117) is activated by
Uridine-Cytidine Kinase 2. PLoS ONE 11(9):
e0162901.
Schröder, M., Giermann, N. & Zrenner, R. 2005. Functional
analysis of the pyrimidine de novo synthesis pathway in solanaceous species. Plant
Physiol. 138(4): 1926-1938.
Setzer, B., Lebrecht, D. & Walker, U.A. 2008. Pyrimidine
nucleoside depletion sensitizes to the mitochondrial hepatotoxicity of the
reverse transcriptase inhibitor stavudine. Am.
J. Pathol. 172(3): 681-690.
Shimamoto, Y., Kazuno, H., Murakami, Y., Azuma, A., Koizumi,
K., Matsuda, A., Sasaki, T. & Fukushima, M. 2002a. Cellular and biochemical
mechanisms of the resistance of human cancer cells to a new anticancer
ribo-nucleoside, TAS-106. Jpn. J. Cancer
Res. 93(4): 445-452.
Shimamoto, Y., Koizumi, K., Okabe, H., Kazuno, H., Murakami,
Y., Nakagawa, F., Matsuda, A., Sasaki, T. & Fukushima, M. 2002b.
Sensitivity of human cancer cells to the new anticancer ribo‐nucleoside
TAS-106 is correlated with expression of Uridine‐cytidine Kinase 2. Jpn. J. Cancer Res. 93(7): 825-833.
Siegel, R.L., Miller, K.D., Fedewa, S.A., Ahnen, D.J.,
Meester, R.G.S., Barzi, A. & Jemal, A. 2017. Colorectal cancer statistics,
2017. CA. Cancer J. Clin. 67(3):
177-193.
Sykes, D.B., Kfoury, Y.S., Mercier, F.E., Wawer, M.J., Law,
J.M., Haynes, M.K., Lewis, T.A., Schajnovitz, A., Jain, E., Lee, D., Meyer, H.,
Pierce, K.A., Tolliday, N.J., Waller, A., Ferrara, S.J., Eheim, A.L.,
Stoeckigt, D., Maxcy, K.L., Cobert, J.M., Bachand, J., Szekely, B.A.,
Mukherjee, S., Sklar, L.A., Kotz, J.D., Clish, C.B., Sadreyev, R.I., Clemons,
P.A., Janzer, A., Schreiber, S.L. & Scadden, D.T. 2016. Inhibition of
dihydroorotate dehydrogenase overcomes differentiation blockade in acute
myeloid leukemia. Cell 167(1):
171-186.e15.
Veettil, S.K., Lim, K.G., Chaiyakunapruk, N., Ching, S.M. & Hassan, M.R.A. 2017. Colorectal
cancer in Malaysia: Its burden and implications for a multiethnic country. Asian J. Surg. 40(6): 481-489.
Walker, U.A., Auclair, M., Lebrecht, D., Kornprobst, M.,
Capeau, J. & Caron, M. 2006. Uridine abrogates the adverse effects of
antiretroviral pyrimidine analogues on adipose cell functions. Antivir. Ther. 11(1): 25-34.
Wang, Q.Y., Bushell, S., Qing, M., Xu, H.Y., Bonavia, A.,
Nunes, S., Zhou, J., Poh, M.K., Sessions, P.F.D., Niyomrattanakit, P., Dong, H.,
Hoffmaster, K., Goh, A., Nilar, S., Schul, W., Jones, S., Kramer, L., Compton,
T. & Shi, P.Y. 2011. Inhibition of dengue virus through suppression of host
pyrimidine biosynthesis. J. Virol. 85(13): 6548-6556.
Yiu, A.J. & Yiu, C.Y. 2016. Biomarkers in colorectal
cancer. Anticancer Res. 36(3):
1093-1102.
Yu, S., Li, X., Guo, X., Zhang, H., Qin, R. & Wang, M.
2019. UCK2 upregulation might serve
as an indicator of unfavorable prognosis of hepatocellular carcinoma. IUBMB Life 71(1): 105-112.
Zeng, Z. & Konopleva, M. 2018. Targeting dihydroorotate
dehydrogenase in acute myeloid leukemia. Haematologica 103(9): 1415-1417.
*Corresponding author; email: shatraho@um.edu.my
|