Sains Malaysiana 50(7)(2021): 1947-1957
http://doi.org/10.17576/jsm-2021-5007-10
Production of
Docosahexaenoic Acid, DHA using Different Modes of Cultivation by Aurantiochytrium sp. SW1
(Penghasilan Asid Dokosaheksaenoik, DHA menggunakan Mod Pengkulturan Berbeza oleh Aurantiochytrium sp. SW1)
SHARIFFAH
NURHIDAYAH SYED ABDUL RAHMAN1, MOHD SAHAID KALIL2 &
AIDIL ABDUL HAMID1*
1Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Department
of Chemical and Processes Engineering, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
13 February 2020/Accepted: 16 November 2020
ABSTRACT
Thraustochytrids,
such as members of the genus Aurantiochytrium, are rich in
docosahexaenoic acid (DHA, C22:6n-3) and represent a promising source of
omega-3 fatty acids which plays a vital role in the enhancement of human
health, particularly for neurological and visual functions. Different modes of cultivation (batch,
fed-batch and repeated-batch) by Aurantiochytrium sp. SW1 were studied for
effective docosahexaenoic acid (DHA) production. In this study, three different
modes of fermentation were carried out in 1 L shake flasks with a working
volume of 500 mL, incubated at 30 ºC and 200 rpm. Batch cultivation
significantly exceeds the rest of cultivation modes, achieving maximal lipid
and DHA concentrations of 11.22 g/L and 5.87 g/L, respectively, and DHA
productivity of 0.061 g/L/h. Lipid and DHA concentration of the repeated-batch
process decreased through the cycles for all three different types of
replacement ratio (80, 90 and 95%). The average decrease percentage of DHA
concentration for cycle one and cycle two were 21.76 and 32.52%, respectively.
However, the fatty acid composition of lipids obtained in the cycles remained
consistent with 16:0 and DHA being the most abundant fatty acids indicating
that this mode of fermentation is highly useable for industrial applications.
Keywords: Aurantiochytrium sp. SW1; docosahexaenoic acid;
fed-batch; repeated-batch
ABSTRAK
Thraustochytrid, seperti dalam kumpulan genus Aurantiochytrium adalah kaya dengan asid dokosaheksaenoik (DHA,
C22:6n-3) dan merupakan sumber asid lemak omega-3 yang memainkan peranan penting dalam memelihara kesihatan manusia terutamanya dalam fungsi neuron dan penglihatan. Penghasilan DHA
oleh Aurantiochytrium sp. SW1 dalam mod pengkulturan berbeza (kultur kelompok, kultur suap-kelompok dan kultur kelompok ulangan)
yang lebih berkesan diteliti. Semua mod pengkulturan ini dijalankan dalam kelalang goncangan 1 L, dengan 500 mL
medium penghasilan pada 30 ºC dan 200 rpm. Mod pengkulturan kultur kelompok adalah lebih signifikan berbanding mod pengkulturan lain apabila menghasilkan kepekatan lipid dan DHA tertinggi dengan nilai masing-masing 11.22 dan 5.87 g/L, serta produktiviti DHA bersamaan 0.061 g/L/jam. Dalam kultur kelompok ulangan (isipadu tertentu medium dituai dan baki kultur ditambah dengan sejumlah medium baru), kepekatan lipid dan DHA didapati berkurangan daripada kitaran 1 sehingga memasuki kitaran 2 bagi ketiga-tiga medium nisbah gantian (80, 90 dan 95%). Peratus pengurangan bagi kepekatan DHA dalam kitaran 1 dan 2, masing-masing adalah 21.76 dan 32.52%. Walau bagaimanapun, ketekalan komposisi asid lemak pada nisbah 16:0 dan DHA merupakan asid lemak yang paling banyak diperoleh dalam dua kitaran pengkulturan, menunjukkan bahawa mod penapaian bagi kultur kelompok ulangan berpotensi tinggi bagi kegunaan industri.
Kata kunci: Asid dokosaheksaenoik; Aurantiochytrium sp. SW1; kultur kelompok-ulangan; kultur suap-kelompok
REFERENCES
Bae,
S.M., Park, Y.C., Lee, T.H., Kweon, D.H. & Choi,
J.H. 2004. Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in
repeated fed-batch and cell recycle fermentation. Enzyme and Microbial Technology 35(6-7): 545-554.
Barajas-solono, A.F., Yoshida, M. & Watanabe, M.M. 2016.
Improvement of biomass and DHA production on a semi-continous culture of Aurantiochytrium sp NYH-2. Chemical
Engineering Transaction 49:
235-240.
Chang, G., Luo, Z., Gu,
S., Wu, Q., Chang, M. & Wang, X. 2013. Fatty acid shifts and metabolic
activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresource
Technology 142: 255-260.
Fan, K.W., Jiang, Y., Fann, Y.W. & Chen, F. 2007. Lipid characterization of
mangrove thraustochytrid - Schizochytrium mangrovei. Journal
of Agriculture and Food Chemistry 55(8): 2906-2910.
Federova, D., Marone, P.A., Bailey-Hall, E. & Ryan, A.S. 2011. Safety
evaluation of algal oil from Schizochytrium sp. Journal
of Food and Chemical Toxicology 49(1): 70-77.
Folch, J., Lees, M. & Sloane-Stanley, G.H.A. 1957. A
simple method for the isolation and purification of total lipids from animal
tissues. Journal of Biological Chemistry 226(1): 497-509.
Furlan, V.J.M., Maus, V., Batista, I. & Bandarra, N.M. 2017. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of Microbiology 48(2): 359-365.
Ganuza, E., Anderson, A.J. & Ratledge,
C. 2008. High-cell-density cultivation of Schizochytrium sp. in an
ammonium/pH-auxostat fed-batch system. Journal of Biotechnology Letters 30(9):
1559-1564.
Gao,
M., Song, X., Feng, Y., Li, W. & Cui, Q. 2013. Isolation and characterization
of Aurantiochytrium species: High docosahexaenoic acid
(DHA) production by the newly isolated microlaga, Aurantiochytrium sp. SD116. Journal of Oleo Science 62(3): 143-151.
Garriga, M., Almaraz, M. & Marchiaro, A. 2017. Determination of reducing sugars in
extracts of Undaria pinnatifida (harvey) algae by UV-visible spectrophotometry (DNS method). Energy Educational Sciences Technology 3: 173-179.
Giulia,
B. 2016. Batch and repeated-batch oil production by microalgae. University of
Wageningen, Netherlands. Ph.D. Thesis (Unpublished).
Hermann,
T. 2003. Industrial production of amino acids by coryneform bacteria. Journal of Biotechnology 104(1-3):
155-172.
Ito,
T., Sota, H., Honda, H., Shimizu, K. & Kobayashi,
T. 1991. Efficient acetic acid production by repeated fed-batch fermentation
using two fermenters. Applied
Microbiology and Biotechnology 36: 295-299.
Koh,
E.S., Lee, T.H., Lee, D.Y., Kim, H.J., Ryu, Y.W. & Seo,
J.H. 2003. Scale-up of erythritol production by an osmophilic mutant of Candida mangnolie.
Biotechnology Letters 25: 2103-2105.
Lee,
J., Lee, S.Y., Park, S. & Middleberg, A.P.J.
1999. Control of fed-batch fermentation. Biotechnology
Advances 17(1): 29-48.
Makrides, M. & Bhatia, J. 2016. The
role of docosahexaenoic acid in the first 1,000 days. Annals of Nutrition & Metabolism 69(1): 8-21.
Manikan, V., Kalil,
M.S. & Hamid, A.A. 2015. Response surface optimization of culture medium
for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid. Scientific Reports 5(8611): 1-8.
Manikan, V., Kalil,
M.S., Isa, M.H.M. & Hamid, A.A. 2014. Improved prediction for medium
optimization using factorial screening for docosahexaenoic acid production by Schizochytrium sp. SW1. American Journal of Applied
Sciences 11(3): 462-472.
Moeller,
L., Grunberg, M., Zehnsdorf, A., Strehlitz,
B. & Bley, T. 2010. Biosensor online control of citric acid production from
glucose by Yarrowia lipolytica using semi continuous fermentation. Engineering
in Life Sciences 10(4): 311-320.
Nazir,
Y., Shuib, S., Kalil, M.S.,
Song, Y. & Hamid, A.A. 2018. Optimization of culture conditions for
enhanced growth, lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium SW1 by response surface methodology. Scientific
Reports 8(8909): 1-12.
Qu,
L., Ren, L.J., Sun, G.N., Ji, X.J., Nie, Z.K. &
Huang, H. 2013. Batch, fed-batch and repeated fed-batch fermentation processes
of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess and Biosystems Engineering 13(1): 966-974.
Ratledge, C. 2005. Fatty acids biosynthesis
microorganism being used for single cell oil production. Biochemistry 86(11): 807-815.
Ren,
L.J., Sun, L.N., Zhuang, X.Y., Qu, L., Ji, X.J. & Huang, H. 2014.
Regulation of docosahexaenoic acid production by Schizochytrium sp.: effect of
nitrogen addition. Bioprocess and
Biosystems Engineering 37: 865-872.
Ren, L.J., Huang, H., Xiao, A.H., Lian, M., Jin, L.J. & Ji, X.J. 2009. Enhanced
docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess and Biosystem
Engineering 32(6): 837-843.
Shakeri, M., Sugano, Y. & Shoda, M. 2007. Production of dye-decolorizing peroxidase (rDyP) from complex substrate by repeated-batch and
fed-batch culture of recombinant Aspergillus oryzae. Journal of Biosciences and Bioengineering 103(2):
129-134.
Shuib, S.,
Ibrahim, I., Mackeen, M.M., Ratledge,
C. & Hamid, A.A. 2018. First evidence for a multienzyme complex of lipid
biosynthesis pathway enzyme in Cunninghamella bainieri. Scientific
Reports 8(3077): 1-10.
Valcenir, J.M.F., Mendes, F., Victor, M., Irineu, B. & Narcisa, M.B. 2016. Production of
docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of
Microbiology 48(2): 359-365.
Wong,
M.K.M., Tsui, C.K.M., Au, D.W.T. & Vrijmoed, L.L.P. 2008. Docosahexaenoic acid production and
ultra-structure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentration. Mycoscience 49(4): 266-270.
Wynn,
J.P., Hamid, A.A. & Ratledge, C. 1999. The role
of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145(8): 1911-1917.
Yamane,
T. & Shimizu, S. 1984. Fed-batch techniques in microbial processes. In. Bioprocess Parameter Control, edited by Fiechter,
A. Berlin, Hiedelberg: Springer. pp. 147-194.
Yu,
X.J., Yu, X.Q., Liu, Y.L., Sun, J., Zheng, J.Y. & Wang, Z. 2015.
Utilization of high-fructose corn syrup for biomass production containing high
level of docosahexaenoic acid by a newly isolated Aurantiochytrium sp. YLH70. Applied Biochemistry and Biotechnology 177(6): 1229-1240.
Zhao,
X., Hu, C.M., Wu, S.G., Shen, H.W. & Zhao, Z.B. 2011. Lipid production by Rhodosporidium toruloides Y4
using different substrate feeding strategy. Journal
of Industrial Microbiology and Biotechnology 38(5): 627-632.
*Corresponding
author; email: aidilah@ukm.edu.my
|