Sains Malaysiana 40(2)(2011): 111–118

 

Composition and Sources of Sterols in Pulau Tinggi, Johor, Malaysia

(Komposisi dan Sumber Sterol di Pulau Tinggi, Johor, Malaysia)

 

Masni Mohd Ali*, Norfariza Humrawali & Mohd Talib Latif

School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Mohamad Pauzi Zakaria

Faculty of Environmental Studies, Universiti Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia

 

Diserahkan: 14 Disember 2009 / Diterima: 4 Ogos 2010

 

ABSTRACT

 

This study explores the role of sterols as lipid biomarkers to indicate their input which originates from various sources in the marine environment. Sterols and their ratios were investigated in sediments taken from sixteen sampling stations at Pulau Tinggi, Johor in order to assess the sources of organic matter. The compounds extracted from the sediments were quantified using a gas chromatography-mass spectrometry (GC-MS). The distributions of sterols indicated that organic matter at all sampling stations originated from a mixture of marine source and terrestrial origins at different proportions. A total of eleven sterols were quantified with the major compounds being phytosterols (44% of total sterols), cholesterol (11%), brassicasterol (11%) and fecal sterols (12%).

 

Keywords: Cholesterol; fecal sterol; lipid biomarker; phytosterol

 

ABSTRAK

 

Kajian ini mengetengahkan peranan sterol sebagai penunjuk biolipid untuk menunjukkan input sebatian-sebatian sterol yang berpunca daripada pelbagai sumber di pesekitaran marin. Sterol yang hadir di dalam sampel sedimen yang diambil dari 16 stesen pensampelan di Pulau Tinggi dikaji dengan menggunakan nisbah tertentu untuk menentukan sumber bahan organik tersebut. Sebatian yang diekstrak daripada sedimen dianalisis menggunakan gas kromatografi-spektrometri jisim (GC-MS). Taburan sterol menunjukkan bahan organik di semua stesen pensampelan berpunca daripada campuran sumber marin dan terestrial pada jumlah yang berbeza. Sebanyak 11 sterol dikenalpasti hadir dengan fitosterol merupakan sebatian utama (44% daripada jumlah sterol), diikuti oleh kolesterol (11%), brasikasterol (11%) dan sterol daripada sisa kumbahan (12%).

 

Kata kunci: Fitosterol; kolesterol; penunjuk biolipid; sterol; sterol kumbahan

 

RUJUKAN

 

Bull, I.D., Lockheart, M.J., Elhmmali, M.M., Roberts, D.J. & Evershed, R.P. 2002. The origin of faeces by means of biomarker detection. Environment International 27: 647-654.

Dai, J. & Sun, M.Y. 2007. Organic matter sources and their use by bacteria in the sediments of the Altamaha estuary during high and low discharge periods. Organic Chemistry 38: 1-15.

Devane, M., Saunders, D. & Gilpin, B. 2006. Faecal sterols and fluorescent whiteners as indicators of the source of faecal contamination. Chemistry in New Zealand 70(3): 74-77.

Duan, Y. & Ma, L. 2001. Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinghai-Tibet plateau, China). Organic Geochemistry 32: 1429-1442.

Fahl, K. & Stein, R. 1999. Biomarkers as organic-carbon-source and environmental indicators in the Late Quaternary Arctic Ocean: problems and perspectives. Marine Chemistry 63: 293-309.

Fernandes, M.B., Sicre, M.-A., Cordosa, J.N. & Macêdo, S.J. 1999. Sedimentary 4-desmethyl sterols and n-alkanols in an eutrophic urban estuary, Capibaribe River, Brazil. The Science of The Total Environmental 231: 1-16.

Froehner, S., Martins, R.F. & Errera, M.R. 2008. Assessment of fecal sterols in Barigui River sediments in Curitiba, Brazil. Environment Monitoring Assessment 157: 591-600.

Giner, J.L., Li, X. & Boyer, G.L. 2001. Sterol composition of Aureoumbra lagunensis, the Texas brown tide alga. Phytochemistry 57: 787-789.

Heiri, O., Lotter, A. F. & Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101-110.

Hyun, J.H., Ju, S.J. & Harvey, H.R. 2002. Fecal contamination associated with local reclamation activity in the Han River Estuary. Journal of the Korean Society of Oceanography 37: 1-8.

Jardé, E., Gruau, G. & Mansuy-Huault, L. 2007. Using sterols to detect pig slurry contribution to soil organic matter. Water, Air, Soil Pollution 178: 169-178.

Leeming, R., Ball, A., Ashbolt, N. & Nichols, P. 1996. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Research 30: 2893-2900.

Logan, GA., Fredericks, D.J., Smith, C. & Heggie, D.T. 2001. Sources of organic matter in Wallis Lake. AGSO Research Newsletter: 15-20.

Marchand, D., Marty, J.-C., Miquel, J.-C., Rontani, J.-F. 2005. Lipids and their oxidation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea: results from a sediment trap study. Marine Chemistry 95: 129-147.

Masni, M.A. & Mudge, S.M. 2006. Cluster analysis in lipid biomarker studies: Acase of Clyde Sea. Sains Malaysiana 35(2): 41-47.

Mater, L., Alexandre, M.R., Hansel, F.A. & Madureira, L.A.S. 2004. Assessment of lipid compounds and phosphorus in mangrove sediments of Santa Catarina Island, SC, Brazil. Journal of the Brazillian Chemical Society 15(5): 725-734.

Méjanelle, L. & Laureillard, J. 2008. Lipid biomarker record in surface sediments at three sites of contrasting productivity in the tropical North Eastern Atlantic. Marine Chemistry 108: 59-76.

Mudge, S.M., Bebianno, M.J.A. F., East, J.A. & Barreira, L.A. 1998. Sterols in the Ria Formosa Lagoon, Portugal. Water Research 33(4): 1038-1048.

Mudge, S.M. & Duce, C.E. 2005. Identifying the source, transport path and sinks of sewage derived organic matter. Environmental Pollution 136: 209-220.

Mudge, S.M. & Norris, C.E. 1997. Lipid biomarkers in the Conwy Estuary (North Wales, U.K.): a comparison between fatty alcohols and sterols. Marine Chemistry 57: 61-84.118

Mudge, S.M. & Seguel, C.G. 1999. Organic contaminatin of San Vicente Bay Chile. Marine Pollution Bulletin 38: 1011-1021.

Ni, H.-G., Lu, F.-H., Luo, X.-L., Tian, H.-Y. & Zeng, E.-Y. 2008. Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China. Marine Pollution Bulletin 56: 1150-1157.

Pagani, M., Freeman, K.H. & Arthur, M.A. 1999. Isotope analyses of molecular and total organic carbon from Miocene sediments. Geochimica et Cosmochimica Acta 64: 37-49.

Patton, D. & Reeves, A.D. 1999. Sterol concentrations and temporal variations on the north shore mudflats of the firth of Tay, Scotland. Marine Pollution Bulletin 38: 613-618.

Pittet, A., Stettler, R. & Kuebler, B. 1990. Use of coprostanol as a specific allochtonous fecal indicator in surface sediment of the Lake of Neuchâtel. Aquatic Sciences 52(7): 130-143.

Ponomarenko, L. P., Makarieva, T. N., Stonik, V. A., Dmitrenok, A. S. & Dmitrenok, P. S. 1995. Sterol composition of Linneus torquatus (Nemertini) Anopla. Comparative Viochemistry and Physiology 111B(4): 575-577

Pratt, C., Warnken, J., Leeming, R., Arthur, M.J. & Grice, D.I. 2008. Degradation and responses of coprostanol and selected sterol biomarkers in sediments to a simulated major sewage pollution event: Amicrocosm experiment under sub-tropical estuarine conditions. Organic Geochemistry 39: 353-369.

Puglisi, E., Nicelli, M., Capri, E., Trevisan, M. & Del Re, A.M. 2003. Cholesterol, β-sitosterol, ergosterol and coprostanol in agricultural soils. Journal of Environmental Quality 32: 466-471.

Reeves, A.D. & Patton, D. 2001. Measuring change in sterol input to estuarine sediments. Physics and Chemistry of the Earth 26: 753-757.

Santos, E.S., Carreira, R. de S. & Knoppers, B.A. 2008. Sedimentary sterols as indicators of environmental conditions in Southeastern Guanabara Bay, Brazil. Brazillian Journal of Oceanography 56: 97-113.

Seguel, C.G., Mudge, S.M., Salgado, C. & Toleda, M. 2001. Tracing sewage in the marine environment: Altered signatures in Concepción Bay, Chile. Water Research 17: 4166-4174.

Shi, W., Sun, M.Y., Molina, M. & Hodson, R.E. 2001. Variability in the distribution of lipid biomarkers and their molecular isotopic composition in Altamaha estuarine sediments: implications for the relative contribution of organic matter from various sources. Organic Geochemistry 32: 453-467.

Smith, S.V. & Hollibaugh, J.T. 1993. Coastal metabolism and the oceanic organic carbon balance. Reviews of Geophysics 31(1): 75-89.

Teshima, S-I. & Kanazawa, A. 1978. Occurence of coprostanol, 24-ethylcoprostanol and 5α-stanols in the marine sediments. Journal of the Oceanographical Society of Japan 34: 85-92.

Thoumelin, G., Bodineau, L. & Wartel, M. 1997. Origin and transport of organic matter across the Seine estuary : Fatty acid and sterol variations. Marine Chemistry 58: 59-71.

Venkatesan, M.I. & Santiago, C.A. 1989. Sterols in ocean sediments: Novel tracers examine habitats of cetaceans, pinnipeds, penguins and humans. Marine Biology 102: 431-437.

Volkman, J.K., Barrett, S.M. & Blackburn, S.I. 1999. Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments. Organic Geochemistry 30: 307-318.

Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E.L. & Gelin, F. 1998. Microalgal biomarkers: Areview of recent research developments. Organic Geochemistry 29: 1163-1998.

Zimmerman, A.R. & Canuel, E.A. 2001. Bulk organic matter and lipid biomarker composition of Chesapeake Bay surficial sediments as indicators of environmental processes. Estuarine, Coastal and Shelf Science 53: 319-341.

 

*Corresponding author; email: masni@ukm.my

 

 

sebelumnya