Sains Malaysiana 40(2)(2011): 119–124

 

Is the High Cu Tolerance of Trichoderma atroviride Isolated from the Cu-Polluted Sediment Due to Adaptation? An In Vitro Toxicological Study

(Adakah Ketahanan Trichoderma atroviride yang Diasingkan daripada Sedimen Tercemar Cu

disebabkan oleh Adaptasi? Satu Kajian Toksikologi In Vitro)

 

C.K. Yap*, M. Yazdani & F. Abdullah

Department of Biology, Faculty of Science

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia

 

S.G. Tan

Department of Cell and Molecular Biology

Faculty of Biotechnology and Bimolecular Sciences

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia

 

Diserahakan: 5 Mac 2009 / Diserahkan: 9 Julai 2010

 

ABSTRACT

 

The tolerance of Cu by Trichoderma atroviride, a tolerant fungus isolated from the drainage surface sediment of the Serdang Industrial Area was investigated under in vitro conditions. Only this fungus species can tolerate up to 600 mg/L of Cu on solid medium Potato Dextrose Agar based on the isolation of the most tolerant fungus from the polluted sediment. Toxicity test performed on T. atroviride, showed a maximum tolerance at 300 mg/L of Cu concentration when grown in liquid medium Potato Dextrose Broth (PDB). The EC50 value of the isolate was 287.73 mg/L of Cu concentration in PDB. The Cu concentration in the drainage surface sediment, where the T. atroviride was isolated from, was 347.64 μg/g while the geochemical distributions of the non-resistant and resistant fractions of Cu were 99.6 and 0.4%, respectively. The sediment data indicated that the drainage had greatly received anthropogenic Cu from the nearby industries which are involved in the manufacturing of plastics and electronic products. The present findings indicate that the high Cu tolerance showed by T. atroviride could be due to the well adaptation of the fungus to the Cu polluted sediment. Therefore, T. atroviride could be a potential bioremediator of Cu pollution in the freshwater ecosystem.

 

Keywords: EC50; geochemical distributions of Cu; toxicity test; Trichoderma atroviride

 

ABSTRAK

 

Ketahanan Trichoderma atroviride, sejenis kulat toleran yang telah diasingkan dari permukaan sedimen longkang kawasan perindustrian Serdang, telah dikaji di bawah keadaan in vitro. Hanya kulat spesies ini sahaja yang boleh bertahan hingga kepekatan Cu 600 mg/L pada medium pepejal ‘Potato Dextrose Agar’ berdasarkan kepada pengasingan kulat yang paling tahan dalam sedimen tercemar. Melalui ujian ketoksikan dengan menggunakan T. atroviride, didapati bahawa ketahanan maksimum spesies ini dalam cecair medium ‘Potato Dextrose Broth’(PDB) adalah pada kepekatan Cu 300 mg/L. Nilai pengasingan EC50 bagi kepekatan Cu dalam PDB ialah 287.73 mg/L. Kepekatan Cu dalam sedimen permukaan longkang, di mana T. atroviride telah diasingkan, ialah 347.64 μg/g manakala taburan bahagian-bahagian geokimia tak rintang dan rintang Cu masing-masing ialah 99.6 dan 0.4%. Data Cu dalam sedimen menunjukkan bahawa longkang tersebut telah menerima Cu antropogenik dari kawasan-kawasan perindustrian seperti plastik dan produk elektronik. Kajian ini menunjukkan bahawa ketahanan T. atroviride terhadap Cu yang tinggi mungkin disebabkan oleh adaptasi kulat tersebut terhadap sedimen yang tercemar dengan Cu. Oleh itu, T. atroviride adalah berpotensi sebagai ‘bioremediator’ bagi pencemaran Cu dalam ekosistem air tawar.

 

Kata kunci: Cu, EC50; taburan geokimia; Trichoderma atroviride; ujian ketoksikan

 

RUJUKAN

 

Aleem, A., Isar, J. & Malik, A. 2003. Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Bioresource Technology 86: 7-13.

Anand, P., Isar, J., Saran, S. & Saxena, R.K. 2006. Bioaccumulation of copper by Trichoderma viride. Bioresource Technology 97: 1018-1025.

Badri, M.A. & Aston, S.R. 1983. Observation on heavy metal geochemical associations in polluted and non-polluted estuarine sediments. Environmental Pollution Ser B, 6: 181-93.

Chen, M. H. & Wu, H.T. 1995. Copper, cadmium and lead in sediment from the Kaoshiung River and its harbour area, Taiwan. Marine Pollution Bulletin 30: 879-884.

Cheung, K.C., Poon, B.H.T., Lan, C.Y. & Wong, M.H. 2003. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 52: 1431-1440.

Colpaert, J.V., & Van Assche, J.A. 1992. Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant and Soil 143: 201-211.

Forstner, U., Wittmann, G. 1981. Metal Pollution in the Aquatic Environment. Berlin: Springer.

Garcıa-Toledo, A., Babich, H. & Stotzky, G. 1985. Training of Rhizopus stolonifer and Cunninghamella blakesleeana to copper: cotolerance to cadmium, cobalt, nickel and lead. Canadian Journal of Microbiology 31: 485-492.

Hartley, J., Cairney, J.W.G. & Meharg, A.A. 1997. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment ? Plant and Soil 189: 303-319.

Lau, S., Mohamed, M. & Su’ut, S. 1996. Logru berat di dalam sedimen sebagai penyurih kepada punca pencemaran Sungai Sarawak. Malaysian Journal of Analytical Sciences 2: 365-371 (In Malay).

Liang, Y. & Wong, M.H. 2003. Spatial and temporal organic and heavy metal pollution at Mai Po Marshes nature reserve, Hong Kong. Chemosphere 52: 1647-1658.

Lim, P. E. & Kiu, M.Y. 1995. Determination and speciation of heavy metals in sediments of Juru River, Pulau Pinang, Malaysia. Environmental Monitoring and Assessment 32: 89-95.

Lopez Errasquın, E. & Vazquez, C. 2003. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50: 137-143.

Mushrifah, I., Ahmad, A. & Badri, M.A. 1995. Heavy metals content in sediments of Terengganu River, Malaysia. Toxicological and Environmental Chemistry 51: 181-190.

Nacorda, J. O., Martinez-Goss, M.R., Torreta, N.K. & Merca, F.E. 2007. Metal resistance and removal by two strains of the green alga, Chlorella vulgaris Beijerinck, isolated from Laguna de Bay, Philippines. Journal of Applied Phycology 19: 701-710.

Rosen, G., Osorio-Robayo, A., Rivera-Duarte, I. & Lapota, D. 2008. Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity. Archives of Environmental Contamination and Toxicology 54(4): 606-611.

Saed, K. 2001. Ecotoxicology of heavy metals (Cd, Pb, Zn and Cu) in flat tree oysters isognomon alatus (Gmelin) from Sepang, Malaysia. PhD Thesis Faculty of Science, Universiti Putra Malaysia, Serdang.

Sahibin, A.R., Ramlan, O., Mohamad, M.T. & Lim, S.S. 2000. Minor element content in estuary and coastal sediment samples from Tanjung Karang and Pulau Langkawi. In Towards Sustainable Management of the Straits of Malacca. edited by M. Shariff, F.M. Yussoff, N. Gopinath, H.M. Ibrahim & R.A. Nik Mustapha, P. 365-379 Malacca Straits Research and Development Centre (MASDEC), Universiti Putra Malaysia, Serdang, Malaysia.

Sin, S.N., Chua, H., Lo, W. & Ng, L.M. 2001. Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environment International 26: 297-301.

Sin, Y.M., Wong, M.K., Chou, L.M. & Normala, A. 1991. A study of the heavy metal contents of the Singapore River. Environmental Monitoring and Assessment 19: 81-84.

Spijkerman, E., Barua, D., Gerloff-Elias, A., Kern, J., Gaedke, U. & Heckathorn, S.A. 2007. Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium. Extremophiles 11: 551-562.

Subramanyam, C. & Gupta, P.D. 1986. Glycogen deposition in Neurospora crassa under conditions of copper toxicity: a correlative ultra structural and biochemical study. Microbiologica 45: 55-62.

Tanner, P., Leong, L.S. & Pan, S.M. 2000. Contamination of heavy metals in marine sediment cores from Victoria Harbour, Hong Kong. Marine Pollution Bulletin 40: 769-779.

Tokalioglu, S., Kartal, S. & Elei, L. 2000. Determination of heavy metals and their speciation in lake sediments by flame atomic spectrometry after a four-stage sequential extraction procedure. Analytical Chimica Acta 413: 33-40.

Tsekova, K. & Todorova, D. 2002. Copper (II) accumulation and superoxide dismutase activity during growth of Aspergillus niger B- 77. Z. Naturforch 57c: 319-322.

Venkateswerlu, G., Yoder, M.J. & Stotzky, G. 1989. Morphological, ultra structural and chemical changes induced in Cunninghamella blakesleeana. Applied Microbiology Biotechnology 31: 619-625.

Yap, C.K., Ismail, A., Tan, S.G. & Omar, H. 2002. Correlation between speciation of Cd, Cu, Pb and Zn in sediment and their concentrations in total soft tissue of green-lipped mussel Perna viridis from the west coastal of Peninsular Malaysia. Environment International 28: 117-126.

Yap, C.K., Ismail, A. & Tan, S.G. 2003. Different soft tissues of the green-lipped mussel Perna viridis (Linnaeus) as biomonitoring agents of copper: Field and laboratory studies. Malaysian Applied Biology 32(2): 9-18.

Yap, C.K., Ismail, A., Omar, H. & Tan, S.G. 2004. Toxicities and tolerances of Cd, Cu, Pb and Zn in a primary producer (Isochrysis galbana) and in a primary consumer (Perna viridis). Environment International 29: 1097-1104.

Zapotoczny, S., Jurkiewicz, A., Tylko, G., Anielska, T. & Turnau, K. 2006. Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiological Research 26: 198-298.

 

*Pengarang untuk surat-menyurat; email: yapckong@hotmail.com

 

 

sebelumnya