Sains Malaysiana 42(8)(2013):
1059–1064
Physiological
Responses of Avicennia marina var. acutissima and Bruguiera
parviflora under Simulated Rise in Sea Level
(Respon
Fisiologi Avicennia marina var.
acutissima dan Bruguiera parviflora
di Bawah
Simulasi Kenaikan Aras Air Laut)
M.Z. Rasheed, O. Normaniza* & M.Z. Rozainah
Institute
of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
Diserahkan:
1 November 2011/Diterima: 3 April 2013
ABSTRACT
Climate change components
such as increased in atmospheric carbon dioxide (CO2) and rising sea
levels are likely to affect mangrove ecosystems. Healthy mature propagules of A. marina var. acutissima and B. Parviflora were
subjected to two tidal treatments; shallow and deep; for six months. Shallow
treatment mimicked the current tidal fluctuations and deep treatment simulated
future tidal conditions under rise in sea level. Deep treatment decreased Amax of
both species and significant two way interactions between tidal treatments and
species were observed. A400 was significantly
reduced in the deep treatment in B. parviflora but not in A. marina.
Carbon dioxide compensation point was not affected by the tidal treatments but
varied significantly between both species. The ratio A400/Amax was
significantly lower in the shallow treatment in B. parviflora indicating
higher carbon sink potential at moderate tidal flooding whereas A400/Amax of A. marina was less variable
between tidal treatments. Chlorophyll conductance was insensitive to tidal
flooding but was significantly higher in B. parviflora than in A.
marina. Carbon sequestration of B.
parviflora was substantially reduced in the deep treatment while the
difference between tidal treatments was much less in A. marina. These
results indicated that these two species responded differently under tidal
flooding where A. marina was less sensitive to tidal. Thus, A.
marina is better adapted to the projected climate change than B.
parviflora.
Keywords: Climate change;
inundation; mangroves; seedling growth; water logging
ABSTRAK
Unsur-unsur perubahan iklim
seperti kenaikan karbon dioksida atmosfera dan aras air laut sememangnya
mempengaruhi ekosistem hutan paya bakau. Dalam kajian ini, propagul Avicennia marina var acutissima dan Bruguiera parviflora didedahkan kepada 2 perlakuan air pasang; dalam dan cetek; selama 6 bulan.
Perlakuan cetek mewakili keadaan semasa sementara perlakuan dalam mewakili
keadaan kenaikan aras air laut pada masa hadapan. Perlakuan dalam mengurangkan
nilai Amax untuk
kedua-dua spesis. Nilai A400 menurun dengan bererti
bagi B. parviflora tetapi tidak A. marina untuk perlakuan dalam. Titik imbangan karbon dioksida tidak
dipengaruhi oleh perlakuan air pasang tetapi menunujukkan perbezaan bererti
antara kedua-dua spesis. Nisbah A400/Amax adalah rendah pada
perlakuan cetek B. parviflora yang menandakan potensi sinki
karbon yang lebih tinggi manakala nisbah A400/Amax bagi A. marina kurang menunujukkan variasi. Konduktans klorofil tidak
sensitif terhadap air pasang namun B. parviflora menunjukkan nilai lebih tinggi
berbanding A. marina. Sekuestrasi karbon B. parviflora menurun
pada perlakuan dalam tetapi tidak begitu ketara pada A. marina. Kesemua
keputusan menunjukkan A. marina lebih toleren terhadap kenaikan aras air
laut berbanding B. parviflora.
Kata kunci: Kebanjiran; kegenangan air; paya bakau; pertumbuhan
biji benih; perubahan iklim
RUJUKAN
Allen, J.A., Krauss, K.W. & Hauff, R.D. 2003. Factors limiting
the intertidal distribution of the mangrove species Xylocarpus granatum. Oecologia 135(1): 110-121.
Ball, M.C., Cochrane, M.J. & Rawson, H.M. 1997. Growth and
water use of the mangroves Rhizophora apiculata and R. stylosa in
response to salinity and humidity under ambient and elevated concentrations of
atmospheric CO2. Plant Cell and Environment 20(9):
1158-1166.
Chen, L.Z., Wang, W.Q. & Lin, P. 2005. Photosynthetic and
physiological responses of Kandelia candel L. druce seedlings to
duration of tidal immersion in artificial seawater. Environmental and
Experimental Botany 54(3): 256-266.
Ellison, A.M. & Farnsworth, E.J. 1997. Simulated sea level
change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora
mangle L.). Oecologia 112(4): 435-446.
Krauss, K.W., Twilley, R.R., Doyle, T.W. & Gardiner, E.S.
2006. Leaf gas exchange characteristics of three neotropical mangrove species
in response to varying hydroperiod. Tree Physiology 26(7): 959-968.
Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L.,.
Ewe, S.M.L. & Sousa, W.P. 2008. Environmental drivers in mangrove
establishment and early development: A review. Aquatic Botany 89(2):
105-127.
McKee,
K.L. & Rooth, J.E. 2008. Where temperate meets tropical: Multi-factorial
effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt Marsh
community. Global Change Biology 14(5): 971-984.
McKevlin,
M.R., Hook, D.D. & McKee, W.H. Jr. 1995. Growth and nutrient use efficiency
of water tupelo seedlings in flooded and well-drained soil. Tree Physiology 15(11):
753-758.
Morison,
J.I.L. 1998. Stomatal response to increased CO2 concentration. Journal
of Experimental Botany 49 (Special Issue): 443-452.
Naidoo,
G. 1983. Effects of flooding on leaf water potential and stomatal resistance in Bruguiera Gymnorrhiza (L.) Lam. New Phytologist 93(3): 369-376.
Naidoo,
G., Rogalla, H. & von Willert, D. 1997. Gas exchange responses of a
mangrove species, Avicennia marina, to waterlogged and drained
conditions. Hydrobiologia 352(1): 39-47.
Pezeshki,
S.R. 1994. Response of baldcypress seedlings to hypoxia: Leaf protein content,
ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthesis. Photosynthetica
(Prague) (30): 59-68.
Pezeshki,
S.R. 2001. Wetland plant responses to soil flooding. Environmental and
Experimental Botany 46(3): 299-312.
Pezeshki,
S.R., Pardue, J.H. & DeLaune, R.D. 1996. Leaf gas exchange and growth of
flood-tolerant and flood-sensitive tree species to soil oxygen deficiency. Tree
Physiology 16: 453-458.
Sayed,
O.H. 1995. Effects of the expected rise in sea level on Avicennia marina L:
A case study in Qatar. Qatar University Science Journal 15: 91-94.
Skelton,
N.J. & Allaway, W.G. 1996. Oxygen and pressure changes measured in situ during
flooding in roots of the grey mangrove Avicennia marina (Forssk) Vierh. Aquatic
Botany 54(2-3): 165-175.
Taylor,
G.E. & Gunderson, C.A. 1998. Physiological site of ethylene effects on
carbon dioxide assimilation in Glycine max L. Merr. Plant Physiology 86(1):
85-92.
Urban,
O. 2003. Physiological impacts of elevated CO2 concentration ranging
from molecular to whole plant responses. Photosynthetica 41(1): 9-20.
Woodroffe,
C.D. & Grindrod, J. 1991. Mangrove biogeography - the role of quaternary
environmental and sea-level change. Journal of Biogeography 18(5):
479-492.
Ye,
Y., Tam, N.F.Y., Wong, Y.S. & Lu, C.Y. 2004. Does rise in sea level
influence propagule establishment, early growth and physiology of Kandelia
candel and Bruguiera gymnorrhiza?. Journal of Experimental Marine
Biology and Ecology 306(2): 197-215.
*Pengarang untuk surat-menyurat; email: normaniza@um.edu.my
|