Sains Malaysiana 42(8)(2013):
1073–1080
Aplikasi
Sistem Maklumat Geografi untuk Pemetaan Reruang-masa: Suatu Kajian Kes Denggi
di Daerah Seremban, Negeri Sembilan, Malaysia
(Application of Geographical Information System for
Spatial-temporal Mapping:
A Case Study of Dengue Cases in Seremban, Negeri Sembilan,
Malaysia)
Mohamad Naim Mohamad Rasidi
Unit Metodologi dan Statistik, Institut Kesihatan Umum, Kementerian
Kesihatan Malaysia
Jalan Bangsar, 50590 Kuala Lumpur, Malaysia
Mazrura Sahani*
Program Kesihatan Persekitaran dan Keselamatan Industri, Pusat
Pengajian Sains Diagnostik
& Kesihatan Gunaan, Fakulti Sains Kesihatan, Universiti
Kebangsaan Malaysia
Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
Hidayatulfathi Othman
Pusat Pengajian Sains Diagnostik & Kesihatan Gunaan, Fakulti
Sains Kesihatan
Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz
50300 Kuala Lumpur, Malaysia
Rozita Hod
Jabatan Kesihatan Masyarakat
Pusat Perubatan Universiti Kebangsaan
Malaysia, Jalan Yaacob Latif, Bandar Tun Razak
56000 Cheras, Kuala Lumpur, Malaysia
Shaharudin Idrus
Institut Alam Sekitar & Pembangunan
(LESTARI), Universiti Kebangsaan Malaysia
43600, UKM Bangi, Selangor D.E. Malaysia
Zainudin Mohd Ali
Jabatan Kesihatan Negeri Sembilan, Jalan Rasah, 70300
Seremban, Negeri Sembilan, Malaysia
Er Ah Choy
Pusat Pengajian Sosial, Pembangunan &
Persekitaran, Fakulti Sains Sosial & Kemanusiaan
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor D.E. Malaysia
Mohd Hafiz Rosli
Akademi Sukan, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor D.E. Malaysia
Diserahkan: 7 Mac 2013/Diterima: 27 Mac 2013
ABSTRAK
Penyakit denggi merupakan penyakit bawaan vektor
yang menjadi salah satu ancaman utama kesihatan awam di Malaysia. Pemetaan taburan kes denggi
daripada aspek reruang-masa boleh menjadi kaedah yang berguna dalam menilai
risiko denggi kepada masyarakat. Kajian ini bertujuan
untuk memetakan taburan reruang dan reruang-masa kes-kes denggi di dalam daerah
Seremban. Metodologi dijalankan dengan Sistem Maklumat
Geografi (GIS)
khususnya analisis reruang dan reruang-masa. Analisis
taburan reruang menggunakan Indeks Moran, purata kejiranan terdekat (ANN)
dan anggaran kepadatan Kernel. Analisis reruang-masa
ditentukan dengan indeks kekerapan, jangka masa dan intensiti untuk mengenal
pasti kawasan berisiko denggi mengikut masa. Sejumlah
6076 kes denggi dicatatkan di Pejabat Kesihatan Daerah Seremban dari tahun 2003
hingga 2009. Kadar insiden denggi adalah tinggi pada tahun 2003, 2008
dan 2009 dengan nisbah denggi : denggi berdarah adalah
21.6:1. Indeks Moran menunjukkan kes denggi berlaku dalam pengelompokan dengan
skor Z adalah 16.384 (p=0.000). Analisis ANN dengan 0.264 (p=
0.000) dengan purata jarak insiden antara kes denggi di dalam kawasan kejiranan
adalah 55 m. Anggaran kepadatan Kernel menunjukkan lokasi kawasan panas kes
denggi tertumpu di Nilai dan Ampangan. Analisis reruang masa dengan purata
nilai tertinggi indeks kekerapan, jangka masa dan intensiti masing-masing
melebihi 0.023, 0.614 dan 0.657 di kawasan berisiko tinggi denggi di Nilai,
Seremban dan Ampangan. Pengawalan denggi perlu diberi tumpuan
kepada kawasan berisiko tinggi ini.
Kata kunci: Denggi; GIS; statistik reruang-masa
ABSTRACT
Dengue is a vector borne disease which is one of the major threats
to public health in Malaysia. Mapping of dengue distribution in spatial and
spatial-temporal aspects can be a useful method in assessing the risk of dengue
to the community. This study aimed to map the spatial and spatial-temporal
distribution of dengue cases in Seremban district. The Geographical Information
System specifically the spatial and spatial-temporal analyses was applied.
Spatial statistical analysis of dengue cases used the Moran’s Index, average
nearest neighbourhood (ANN) and kernel density estimation.
Spatial-temporal analysis was determined through frequency, duration and
intensity indices to identify timely dengue risk area. A total of 6076 dengue
cases were reported in Seremban Health District Office from 2003-2009. The result
showed a high incidence rate in 2003, 2008 dan 2009 with ratio of dengue:
dengue hemorrhagic fever of 21.6:1. Moran’s I showed dengue cases occurred in
cluster with Z-score of 16.384(p=0.000). ANN analysis of 0.264 (p=
0.000) where the mean distance between every dengue case is 55 m. Kernel
density estimation showed the dengue hotspots concentrated in Nilai and
Ampangan. Spatial-temporal analysis with the highest mean of frequency,
duration and intensity indices of above 0.023, 0.614 and 0.657 showed that the
high risk dengue areas were Nilai, Seremban and Ampangan. The dengue control
activities should be targeted at these high risk areas.
Keywords: Dengue; GIS;
spatial-temporal analysis
RUJUKAN
Almeida, A.S., Andrade Mendronho, R.
& Valencia, L.I.O. 2009. Spatial analysis of dengue and socioeconomic content of the city of
Rio de Janeiro (southern Brazil). Rev Saúde Pública 43(4):
666-673.
Aziz, S. 2011. Evaluation of the spatial
risk factors for high incidence of dengue fever and dengue hemorrhagic fever
using GIS Application. Sains Malaysiana 40(8): 937-943.
Barreto, F.R., Teixeira M.C., Carvalho, M.S. & Barreto
M.L. 2008. Spread pattern of the first dengue epidemic in the city of Salvador,
Brazil. BMC Public Health 8:51. http://www. biomedcentral.com/1471-2458/8/51
(18 September 2011).
Bithell, J.F. 1990. An application of
density estimation to geographical epidemiology. Statistics in
Medicine 9: 691-701.
Er, A.C., Rosli, M.H., Asmahani, A., Mohamad Naim, M.R.
& Harsuzilawati, M. 2010. Spatial mapping of dengue incidence: A case study
in Hulu Langat District, Selangor, Malaysia. International Journal of Human
and Social Sciences 5(6): 410-414.
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der
Linden, P.J. & Xiaosu, D. 1996. Climate Change 2001: The Scientific
Basis. Cambridge: Cambridge University Press.
IPCC. 2001. Synthesis Report. A Contribution of Working
Groups I, II and III to the Third Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge: Cambridge University Press.
Jabatan Perancangan Bandar dan Desa. 2007. Data Digital. Kuala Lumpur: Jabatan
Perancangan Bandar Dan Desa.
Kementerian Kesihatan Malaysia. 2006. Fakta Kesihatan Malaysia, Sistem Informasi Dan
Dokumentari.
Kementerian Kesihatan Malaysia. 2010. Current Situation of Dengue and Dengue Hemorrhagic
Fever. http://www.moh. gov.my (20 Januari 2010).
King, C.C., Chao, D.Y., Wen, T.H., Kao, C.L., Ku, C.C., Wu,
J.T.S., Huang, S.Y.J., Tipayamongkholgu, M., Shang, C.S., Li, Y.S., Wang, H.T.,
Liao, M.Y., Wang, W.K., Wu, H.C. & Chang, J.K.J. 2008. Epidemiologic
characteristics of dengue in Taiwan and implications for global control: A
review. Dlm Dengue. Kerala: Research Signpost. hlm.
1-44.
Levine, N. 2007. Crimestat: A Spatial Statistics Program for the
Analysis of Crime Incident Locations (Version 3.0). Washington, D.C.: Ned
Levine & Associates, Houston, TX and the National Institute of Justice.
Malavige, G.N., Fernando, S., Fernando, D.J. &
Seneviratne, S.L. 2004. Review: Dengue viral infection. Postgraduate Medical
Journal 80: 588-601.
Nazri, C.D., Abu Hassan, A., Rabiatul,
A. & Rodziah, I. 2010. Spatial
mapping of temporal risk characteristic of dengue cases in Subang Jaya. 2010 International Conference on Science and Social Research. December 5-7. Kuala Lumpur.
Nakhapakorn, K. & Jirakajohnkool, S. 2006. Temporal and
spatial autocorrelation statistics of dengue fever. Dengue Bulletin 30:
171-183.
Seng, S.B., Chong, A.K. & Moore, A. 2005. Geostatistikal
Modelling, Analysis and Mapping of Epidemiology of Dengue Fever in Johor State,
Malaysia. The 17th Annual Colloquium of the Spatial
Information Research Centre, University of Otago, Dunedin, New Zealand. November 24-25.
Shaharudin, I., Shamsul, A.S., Tahir,
A., Mariam, M., Azah, D. & Nik Shamsidah, N.I. 2002. Sistem Maklumat Geografi (GIS) dan sektor kesihatan awam:
Kajian demam denggi di Bandar Baru Bangi dan Kajang. Jurnal Kesihatan
Masyarakat 8(S):34-42.
Siti Morni, U., Mazlin, M., Noraini, S.
& Anizar, A. 2007. Generating a dengue
risk map (DRM) based on environmental factors using remote sensing and GIS
technologies. http:www.a-a-r-s.org/acrs/proceeding/ACRS2007/Papers/
TS27.4.pdf (2 Ogos 2011).
Wan Fairos, W.Y., Wan Azaki, W.H., Mohamad Alias, L. &
Bee Wah, Y. 2010. Modelling dengue fever (DF) and dengue hemorrhagic fever
(DHF) outbreak using Poisson and negative binomial model. World Academy of
Science, Engineering and Technology 62: 903-908.
Wen, T.H., Lin, N.H., Chao, D.Y., Hwang, K.P., Kan, C.C.,
Lin, K.C.M., Wu, J.T.S., Huang, S.Y.J., Fan, I.C. & King, C.C. 2009.
Spatial-temporal patterns of dengue in areas at risk of dengue hemorrhagic
fever in Kaohsiung, Taiwan, 2002. International Journal of Infectious
Diseases 14(4): 334-343.
Wen, T.H., Lin, H.N., Lin, C.H., King,
C.C. & Su, M.D. 2006. Spatial
mapping of temporal risk characteristics to improve environmental health risk
identification: A case study of a dengue epidemic in Taiwan. Sci. Total
Environ. 367: 631-640.
*Pengarang untuk surat-menyurat; email: mazrura@gmail.com
|