Sains Malaysiana 42(8)(2013): 1081–1089
Geotechnical
Characterisation of Marine Clay As Potential Liner Material
(Pencirian Geoteknik Lempung Marin Sebagai Potensi Bahan Pelapik)
Z.A. Rahman*, W.Z.W. Yaacob, S.A. Rahim, T. Lihan, W.M.R. Idris
& W.N.F. Mohd Sani
School Environmental & Natural Resource Sciences, Faculty
of Science and Technology
Universiti Kebangsaan Malaysia, Bangi 43600 Selangor D.E. Malaysia
Diserahkan: 18 Julai 2012/Diterima 22 Februari 2013
ABSTRACT
Natural clay is commonly used as a liner material to contain
landfill leachate from contaminating the environment. A key characteristic of
liner material is its hydraulic conductivity. It is recommended that the
hydraulic conductivity of the potential liner material should be of 1×10-9 m/s
or less. This paper presents the geotechnical characteristics of marine clay
that may be used as landfill liner material. The tests were consistency index,
compaction behaviour, compressibility and hydraulic conductivity. The marine
clay was dominated by finer fraction of silt and clay (78%-88%) followed by
sand (12%-22%). The clay minerals commonly present were montmorillonite,
kaolinite and illite as well as quartz as the non-clay mineral. The consistency
index for the liquid limit, wL and
plastic limit, wP were
56.6%-80.5% and 36%-45%, respectively. The plastic index, Ip of
the marine clay samples ranged from 19% to 37%. The permeability test indicated
that the hydraulic conductivity of the samples ranged between 1.10 × 10-9 and
2.44 × 10-9 m/s. The very low permeability
showed by the marine clay can be related to the presence of high content of
finer fraction. Compaction of marine clay samples resulted in maximum dry
density, ρdmax that
ranged between 1.5 and 1.6 g/cm3 and
optimum moisture content, wopt that
ranged between 18.2% and 25%. During the consolidation of the marine clay, the
hydraulic conductivity decreased within the recommended permeability for
landfill liners. This study showed that some geotechnical characteristics of
the studied marine clay were in favour of being used as landfill liner
material.
Keywords: Consistency index; landfill; liner; marine clay; shear
strength
ABSTRAK
Lempung semula jadi sering digunakan sebagai bahan pelapik untuk
menghalang pencemaran cecair larut resap tapak pelupusan ke persekitaran. Ciri
utama bahan pelapik adalah sifat ketelapannya. Kekonduksian hidraulik yang
disarankan bagi bahan berpotensi sebagai pelapik seharusnya 1×10-9 m/s
atau kurang. Kertas ini menunjukkan ciri geoteknik lempung marin yang mungkin
dapat digunakan sebagai bahan pelapik tapak pelupusan. Ujian yang dilakukan
adalah indeks ketekalan, sifat pemadatan dan kekonduksian hidraulik. Lempung
marin didominasi oleh fraksi halus bersaiz lodak dan lempung (78%-88%) diikuti
oleh pasir (12%-22%). Mineral lempung yang sering hadir adalah monmorilonit,
kaolinit dan ilit serta kuarza sebagai mineral bukan lempung. Indeks
kekonsistensi bagi had cecair, wL dan
had plastik, wp masing-masing
adalah 56.6%-80.5% dan 36%-45%. Indeks keplastikan, IP sampel
lempung marin berjulat daripada 19 hingga 37%. Ujian ketelapan menunjukkan
kekonduksian hidraulik sampel berjulat antara 1.10 × 10-9 dan
2.44 × 10-9 m/s. Nilai ketelapan yang sangat
rendah yang ditunjukkan oleh lempung marin boleh dikaitkan dengan kehadiran
kandungan fraksi halus yang tinggi. Pemadatan sampel lempung marin menghasilkan
ketumpatan kering maksimum, ρdmax berjulat
1.5 - 1.6 g/cm3 dan
kandungan optimum lembapan, wopt berjulat
antara 18.2% dan 25%. Semasa pengukuhan lempung marin, kekonduksian hidraulik
menurun dalam kebolehtelapan yang disyorkan bagi bahan pelapik tapak pelupusan.
Kajian ini menunjukkan ciri geoteknik lempung marin yang dikaji memihak sebagai
bahan pelapik tapak pelupusan.
Kata kunci: Indeks ketekalan; kekuatan ricih;
lempung marin; pelapik; tapak pelupusan
RUJUKAN
Ahn, H.S. & Jo, H.Y. 2009. Influence of
exchangeable cations on hydraulic conductivity of compacted-bentonite. Applied
Clay Science 44: 144-150.
Alamgir, M., McDonald, Ch., Roehl, K.E. &
Ahsan, A. 2005. Integrated management and safe disposal of municipal solid
waste in least developed Asian countries. A feasibility study. Khulna
University of Engineering and Technology, Khulna, Bangladesh. p. 83.
Arasan, S. & Yetimoglu, T. 2006. Effect of
leachate components on the consistency limits of clay liners. 11th National
Soil Mechanic and Foundation Engineering Congress, Trabzon, Turkey pp.
439-445.
Arasan, S. 2010. Effect of chemicals on
geotechnical properties of clay liners: A review. Research Journal of
Applied Sciences, Engineering and Technology 2(8): 765-775.
Bagchi, A.C. 2004. Design of landfills and
integrated solid waste management. In Landfill Design. 3rd ed.
United States of America: Wiley and Sons.
Basack, S. & Purkayastha, R.D. 2009.
Engineering properties of marine clays from the eastern coast of India. Journal
of Engineering and Technology Research 1(6): 109-114.
Belloo, A.A. 2012. Geotechnical evaluation of
reddish brown tropical soils. Geotechnical and Geology Engineering Journal 30:
481-498.
Benson, C.H. & Trast, J.M. 1995. Hydraulic
conductivity of thirteen compacted clays. Clays and Clay Minerals 43(6):
669-681.
Bjerrum, L. 1973. Problems of soil mechanics and
construction on soft clays: state of the art report. Proceedings 8th
International Conference on Soil Mechanics and Foundation Engineering.
Moscow, Russia
British Standard Institution 1377. 1990a. Methods
of Test for Soil for Civil Engineering Purposes-Part 2: Classification Tests.
BS1377, London.
British Standard Institution 1377. 1990b. Methods
of Test for Soil for Civil Engineering Purposes-Part 4: Compaction-Related
Tests. BS1377, London.
British Standard Institution 1377. 1990c. Methods
of Test for Soil for Civil Engineering Purposes-Part 5: Compressibility,
Permeability and Durability Tests. BS1377, London.
British Standard Institution 1377. 1990d. Methods
of Test for Soil for Civil Engineering Purposes-Part 7: Shear Strength Tests
(Total Stress). BS1377, London.
Chalermyanont, T., Arrykul, S. &
Charoenhaisong, N. 2008. Potential use of lateritic and marine clay soils as
landfill liners to retain heavy metals. Waste Management 29: 117-127.
Chew, S.H., Kamrazzuman, H.M. & Lee, F.H.
2004. Physicochemical and engineering behavior of cement treated clays. Journal
of Geotechnical and Geoenvironmental Engineering ASCE 130(7): 696-706.
Chung, S.G., Ryu, C.K., Jo, K.Y. & Huh, D.Y.
2007. Geological and geotechnical characteristics of marine clays at the Busan
new port. Marine Georesources and Geotechnology 23(3): 235-251.
Du, Y.J. & Hayashi, S. 2004. Some factors
controlling the adsorption of potassium ions on clayey soils. Applied Clays
Science 27: 209-231.
Department of Transport 1991. Specification
for Highway Works. HMSO, London.
Dias, C.R.R. & Alves, A.M.L. 2009.
Geotechnical properties of the Cassino Beach mud. Continental Shelf Research 29: 589-596.
EPA. 1990. Compilation of Information on
Alternative Barriers for Liner and Cover Systems. EPA600-R-91-002. Prepared by
Daniel, D.E. & Estornell, P.M. for Office of Research and Development,
Washington, DC.
Hyde, A.L., Yasuhara, K. & Hirao, K. 1993.
Stability criteria for marine clay under one-way cyclic loading. Journal of
Geotechnical Engineering ASCE 119(11): 1771-1789.
Islam, M.R., Alamgir, M., Mohiuddin, K.M. &
Hasan, K.M.M. 2008. Investigation of physical properties of a selected soil to
use as a clay liner in sanitary landfill. Proceedings of National Seminar on
Solid Waste Management-WasteSafe. pp.167-174.
Itakura, T., Airey, D.W. & Dobrolot, J.Y.M.
2005. Geotechnical characterisation of alluvial soils used to contain
industrial liquid wastes. Bulletin of Engineering Geology and Environments 64:
273-285.
Jones, R.M., Murray, E.J. & Rix, D.W. 1993.
Selection of clays for use as landfill liners. Waste Disposal by Landfill. Proceedings
Symposium Green ’93. pp. 433-438.
Kamon,
M. & Katsumi, T. 2001. Clay liners for waste landfill. In Clay Science
for Engineering, edited by Adachi, K. & Fukue, M. & Balkema, A.A.
pp. 29-46.
Kooistra,
J.M. & Tovey, N.K. 1994. Effects of compaction on soil microstructure. In Soil
Compaction in Crop Poduction. Soane, B.D. & van Quwerkerk, C. Elsevier
pp. 91-111.
Long,
M. & Menkiti, C.O. 2007. Geotecnical properties of Dublin Boulder clay. Geotechnique 57(7): 595-611.
Means,
R.E. & Parchers, J.V. 1963. Physical Properties of Soils. Ihio:
Merrill Book Inc. Columbus.
Mitchell,
J.K. 1993. Fundamentals of Soil Behavior. 2nd ed. New York: John Wiley
& Sons.
Murray,
E.J., Rix, D.W. & Humphrey, R.D. 1992. Clay lining to landfill sites. Quarterly
Journal of Engineering Geology 25(4): 371-376.
Ohtsubo,
M., Egashira, K., Tanaka, H. & Mishima, O. 2002. Clay minerals and
geotechnical index properties of marine clays in East Asia. Marine
Georesources & Geotechnology 20(4): 223-235.
Pierce,
J.W. & Siegel, F.R. 1969. Quantification in clay minerals studies of
sediment and sedimentary rock. Journal of Sediment Petrology 9: 187-193.
Rao,
D.K., Raju, R.P., Sowjanya, C. & Rao, P. 2009. Laboratory studies on the
properties of stabilised marine clay from Kakinada Sea, Coast India. International
Journal of Engineering Science and Technology 3(1): 422-428.
Rao,
D.K., Raju, R.P. & Kumar, R.A. 2011. Consolidation characteristics of
treated marine clay for foundation bed soils. International Journal of
Engineering Science and Technology 3(2): 788-796.
Rominger,
J.F. & Rutledge, P.C. 1952. Use of soil mechanics data in correlation and
interpretation of Lake Aggassiz sediments. Journal of Geology 60(2):
160-180.
Sridharan,
A., Rao, P.R. & Miura, N. 2004. Characterization of Ariake and other marine
clays. In Proceedings of International Symposium of Lowland Technology 1:
53-58.
Suneel,
M., Park, L.K. & Im, J.C. 2008. Compressibility characteristics of Korean
marine clay. Marine Georesources & Geotechnology 26(2): 111-127.
Taha,
M.T., Ahmed, J. & Asmirza, S. 2000. One-dimensional consolidation of Kelang
clay. Pertanika Journal Science & Technology 8(1): 19-29.
Tan,
T.S., Goh, T.L. & Yong, K.Y. 2002. Properties of Singapore marine clay
improved by cement mixing. Geotechnical Testing Journal 25(4): 1-11.
Terzaghi,
K., Peck, R. & Mesri, G. 1996. Soil Mechanics in Engineering Practice.
3rd ed. New York: Wiley-Interscience, John Wiley and Sons, Inc.
Van
Imple, W.F. 1998. Environmental Geotechnics: ITC5 Activities-State of Art. In Proceedings
of the 3rd International Congress on Enviromental Geotechnics pp.1163-1187.
Yilmaz,
I. 2000. Evaluation of shear strength of clayey soils by using their liquidity
index. Bulletin of Engineering. Geology and Environments 59:
227–229.
Yong,
R.N., Tan, B.K., Bently, S.P., Thomas, H.R., Yaacob, W.Z.W. & Hashim, A.
1998. Assessment of attenuational capability of two clay soils via leaching
column test. In: Proceedings of the 3rd International Congress on
Enviromental Geotechnics pp. 503-308.
Yong,
R.N. & Phadungchewit, Y. 1993. pH influence on selectively and retention of
heavy metals in some clay soils. Canadian Geotechnical Journal 30:
821-833.
*Pengarang
untuk surat-menyurat; email: zarah1970@ukm.my
|