Sains Malaysiana 44(1)(2015): 75–81

 

Quantifying the Relative Importance of Climate and Habitat on Structuring the Species and Taxonomic Diversity of Aquatic Plants in a Biodiversity Hotspot of Tropical Asia

(Mengukur Kepentingan Relatif Iklim dan Habitat Terakhir Penstrukturan Spesies dan Kepelbagaian

Taksonomi Tumbuhan Akuatik di Bintik Panas Kepelbagaian Biologi Asia Tropika)

 

 

YOUHUA CHEN*

Department of Renewable Resources, University of Alberta, Edmonton, T6G 2H1

Canada

 

Diserahkan: 13 Februari 2014/Diterima: 3 Julai 2014

 

ABSTRACT

It has not been well known how climate and habitat variables will influence the distribution of plant species to some extents at mesoscales. In this report, by using the distribution of aquatic plants in Western Ghats, a biodiversity hotspot in tropical Asian region, I quantify the relative importance of climate and habitat variables on structuring spatially species richness and taxonomic diversity patterns using structural equation modeling. All the sampling qudrats in the region used for the study has a spatial resolution of 0.5 latitude × 0.5 longitude. The results showed that species richness is high in both northern and southern part of the region, while low in the middle part. In contrast, taxonomic distinctiveness is relatively homogeneous over all the sampling quadrats in the region. Structural equation modeling suggested that taxonomic distinctiveness patterns of aquatic plants in the region follow temperature (partial regression coefficient=0.31, p<0.05) and elevational (partial regression coefficient=0.31, p<0.05) gradients, while richness patterns cannot be explained by any of the currently used variables. In conclusion, environmental variables that are related to taxonomic distinctiveness would not be related to richness, given the fact that these two quantities are orthogonal more or less. Both climate and habitat are equally influential on taxonomic distinctiveness patterns for aquatic plants in Western Ghats of India.

 

Keywords: Climatic envelope; environmental correlation; Linnaeus classification; World Clim database

 

ABSTRAK

Masih belum diketahui bagaimanakah pemboleh ubah iklim dan habitat akan mempengaruhi taburan spesies tumbuhan mengikut skalameso. Dalam laporan ini, dengan menggunakan taburan tumbuhan akuatik di Barat Ghats yang merupakan titik panas kepelbagaian biologi di rantau Asia tropika, saya menentukan kepentingan pemboleh ubah iklim dan habitat terakhir penstrukturan reruang kekayaan spesies dan taksonomi kepelbagaian corak menggunakan pemodelan persamaan struktur. Semua sampel quadrat yang digunakan untuk kajian di rantau ini mempunyai resolusi reruang 0.5 latitud × longitud 0.5. Hasil kajian menunjukkan bahawa kekayaan spesies adalah tinggi di bahagian utara dan selatan rantau ini, manakala rendah di bahagian tengah. Sebaliknya, perbezaan taksonomi adalah agak seragam ke atas semua sampel quadrat di rantau ini. Pemodelan persamaan struktur mencadangkan bahawa pola perbezaan taksonomi tumbuhan akuatik di rantau ini mengikut suhu (pekali regresi separa = 0.31, p<0.05) dan ketinggian (pekali regresi separa = 0.31, p<0.05) kecerunan, manakala pola kekayaan tidak dapat dijelaskan oleh mana-mana pemboleh ubah yang sedang digunakan. Kesimpulannya, pemboleh ubah alam sekitar yang berkaitan dengan perbezaan taksonomi tidak berkaitan dengan kekayaan, memandangkan kuantiti kedua-duanya adalah lebih atau kurang ortogon. Kedua-dua iklim dan habitat mempengaruhi pola perbezaan taksonomi untuk tumbuhan akuatik di Barat Ghats India.

 

Kata kunci: Iklim sampul; korelasi alam sekitar; pangkalan data WorldClim; pengelasan Linnaeus

RUJUKAN

 

Arhonditsis, G., Stow, C., Steinberg, L., Kenney, M., Lathrop, R., McBride, S. & Recknow, K. 2006. Exploring ecological patterns with structural equation modeling and Bayesian analysis. Ecological Modelling 192: 385-409.

Beier, P. 2012. Conceptualizing and designing corridors for climate change. Ecological Restoration 30: 312-319.

Bevilacque, S., Sandulli, R., Plicanti, A. & Terlizzi, A. 2012. Taxonomic distinctness in Mediterranean marine nematodes and its relevance for environmental impact assessment. Marine Pollution Bulletin 64: 1409-1416.

Borcard, D., Legendre, P. & Drapeau, P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045.

Clarke, K. & Warwick, R. 2001. A further biodiversity index applicable to species lists: Variation in taxonomic distinctness. Marine Ecology Progress Series 216: 265-278.

Clarke, K. & Warwick, R. 1999. The taxonomic distinctness measure of biodiversity: Weighting of step lengths between hierarchical levels. Marine Ecology Progress Series 184: 21-29.

Clarke, K. & Warwick, R. 1998. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology 35: 523-531.

Forest, F., Grenyer, R., Rouget, M., Davies, T.J., Cowling, R.M., Faith, D.P., Balmford, A., Manning, J.C., Procheş, S., van der Bank, M., Reeves, G., Hedderson, T.A.J. & Savolainen, V. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757-760.

Haddad, N. 2008. Finding the corridor more traveled. PNAS 105: 19569-19570.

He, T. 2013. Structural equation modelling analysis of evolutionary and ecological patterns in Australian Banksia. Population Ecology 55: 461-467.

Huang, J., Chen, B., Liu, C., Lai, J., Zhang, J. & Ma, K. 2012. Identifying hotspots of endmeic woody seed plant diversity in China. Diversity and Distributions 18: 673-688.

Keith, M., Chimimba, C., Reyers, B. & van Jaarsveld, A. 2005. Taxonomic and phylogenetic distinctiveness in regional conservation assessments: A case study based on extant South African Chiroptera and Carnivora. Animal Conservation 8: 279-288.

Lam, T. & Maguire, D. 2012. Structural equation modeling: Theory and applications in forest management. International Journal of Forestry Research 2012: 263953.

Legendre, P. 2007. Studying beta diversity: Ecological variation partitioning by multiple regression and canonical analysis. Journal of Plant Ecology 1: 3-8.

Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.F. & He, F. 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90: 663-674.

Leonard, D., Clarke, K., Somerfield, P. & Warwick, R. 2006. The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments. Journal of Environment Management 78: 52-62.

Lindenmayer, D. & Nix, H. 1993. Ecological principles for the design of wildlife corridors. Conservation Biology 7: 627-631.

Lindo, Z. & Winchester, N.N. 2009. Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 160: 817-25.

Liu, H., Edwards, E., Freckleton, R. & Osborne, C. 2012. Phylogenetic niche conservatism in C4 grasses. Oecologia 170: 835-845.

Losos, J. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11: 995-1003.

McClanahan, T., Maina, J. & Muthiga, N. 2011. Associations between climate stress and coral reef diversity in the western Indian Ocean. Global Change Biology 17: 2023-2032.

Myers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858.

Pavao-Zuckerman, M. & Coleman, D. 2007. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Applied Soil Ecology 35: 329-339.

Perez-Losada, M. & Crandall, A. 2003. Can taxonomic richness be used as a surrogate for phylogenetic distinctness indices for ranking areas for conservation? Animal Biodiversity and Conservation 26: 77-84.

Pienkowski, M., Watkinson, A., Kerby, G., Warwick, R. & Clarke, K. 1998. Taxonomic distinctness and environment assessment. Journal of Applied Ecology 35: 532-543.

Qian, H. 2014. Contrasting relationships between clade age and temperature along latitudinal versus elevational gradients for woody angiosperms in forests of South America. Journal of Vegetation Science: DOI: 10.1111/jvs.12175.

Qian, H. 2007. Relationships between plant and animal species richness at a regional scale in China. Conservation Biology 21: 937-944.

Qian, H. & Kissling, W. 2010. Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China. Ecology 91: 1172-1183.

Qian, H., Kissling, W., Wang, X. & Andrews, P. 2009. Effects of woody plant species richness on mammal species richness in southern Africa. Journal of Biogeography 36: 1685-1697.

R Development Core Team. 2013. R: A Language and Environment for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Reich, P., Bakken, P., Carlson, D., Frelich, L., Friedman, S. & Grigal, D. 2001. Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests. Ecology 82: 2731-2748.

Rosseel, Y. 2012. lavaan: An R package for structural equation modeling. Journal of Statistical Software 48: 1-36.

Schweiger, O., Klotz, S., Durka, W. & Kuhn, I. 2008. A comparative test of phylogenetic diversity indices. Oecologia 157: 485-495.

Wang, Z. & Chen, Y. 2009. Relationship between taxonomic distinctness and environmental stress in terrestrial organisms at large spatial scale: A study for insect family Ceratopogonidae in East Asia. Acta Zoologica Bulgarica 61: 69-77.

Wiens, J. 2004. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58: 193-197.

Williams, P., Gibbons, D., Margules, C., Rebelo, A., Humphries, C. & Pressey, R. 1996. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology 10: 155-174.

 

 

*Pengarang untuk surat-menyurat; email: youhua@ualberta.ca

 

 

sebelumnya