Sains Malaysiana 44(1)(2015): 75–81
Quantifying
the Relative Importance of Climate and Habitat on Structuring the Species and
Taxonomic Diversity of Aquatic Plants in a Biodiversity Hotspot of Tropical
Asia
(Mengukur Kepentingan Relatif Iklim dan Habitat Terakhir Penstrukturan
Spesies dan Kepelbagaian
Taksonomi Tumbuhan Akuatik di Bintik Panas Kepelbagaian Biologi Asia
Tropika)
YOUHUA CHEN*
Department of Renewable Resources, University of Alberta,
Edmonton, T6G 2H1
Canada
Diserahkan: 13 Februari 2014/Diterima: 3 Julai 2014
ABSTRACT
It has not been well known how climate and habitat variables will
influence the distribution of plant species to some extents at mesoscales. In
this report, by using the distribution of aquatic plants in Western Ghats, a
biodiversity hotspot in tropical Asian region, I quantify the relative
importance of climate and habitat variables on structuring spatially species
richness and taxonomic diversity patterns using structural equation modeling.
All the sampling qudrats in the region used for the study has a spatial
resolution of 0.5 latitude × 0.5 longitude. The results showed that
species richness is high in both northern and southern part of the region,
while low in the middle part. In contrast, taxonomic distinctiveness is relatively
homogeneous over all the sampling quadrats in the region. Structural equation
modeling suggested that taxonomic distinctiveness patterns of aquatic plants in
the region follow temperature (partial regression coefficient=0.31, p<0.05) and elevational (partial
regression coefficient=0.31, p<0.05) gradients, while richness
patterns cannot be explained by any of the currently used variables. In
conclusion, environmental variables that are related to taxonomic
distinctiveness would not be related to richness, given the fact that these two
quantities are orthogonal more or less. Both climate and habitat are equally
influential on taxonomic distinctiveness patterns for aquatic plants in Western
Ghats of India.
Keywords: Climatic envelope; environmental correlation; Linnaeus
classification; World Clim database
ABSTRAK
Masih belum diketahui bagaimanakah pemboleh ubah iklim dan habitat
akan mempengaruhi taburan spesies tumbuhan mengikut skalameso. Dalam
laporan ini, dengan menggunakan taburan tumbuhan akuatik di Barat
Ghats yang merupakan titik panas kepelbagaian biologi di rantau
Asia tropika, saya menentukan kepentingan pemboleh ubah iklim dan
habitat terakhir penstrukturan reruang kekayaan spesies dan taksonomi
kepelbagaian corak menggunakan pemodelan persamaan struktur. Semua
sampel quadrat yang digunakan untuk kajian di rantau ini mempunyai
resolusi reruang 0.5 latitud × longitud 0.5. Hasil kajian
menunjukkan bahawa kekayaan spesies adalah tinggi di bahagian utara
dan selatan rantau ini, manakala rendah di bahagian tengah. Sebaliknya,
perbezaan taksonomi adalah agak seragam ke atas semua sampel quadrat
di rantau ini. Pemodelan persamaan struktur mencadangkan bahawa
pola perbezaan taksonomi tumbuhan akuatik di rantau ini mengikut
suhu (pekali regresi separa = 0.31, p<0.05) dan ketinggian (pekali regresi separa
= 0.31, p<0.05) kecerunan, manakala pola kekayaan tidak
dapat dijelaskan oleh mana-mana pemboleh ubah yang sedang digunakan.
Kesimpulannya, pemboleh ubah alam sekitar yang berkaitan dengan
perbezaan taksonomi tidak berkaitan dengan kekayaan, memandangkan
kuantiti kedua-duanya adalah lebih atau kurang ortogon. Kedua-dua
iklim dan habitat mempengaruhi pola perbezaan taksonomi untuk tumbuhan
akuatik di Barat Ghats India.
Kata kunci: Iklim sampul;
korelasi alam sekitar; pangkalan data WorldClim; pengelasan Linnaeus
RUJUKAN
Arhonditsis, G., Stow, C., Steinberg, L.,
Kenney, M., Lathrop, R., McBride, S. & Recknow, K. 2006. Exploring
ecological patterns with structural equation modeling and Bayesian analysis. Ecological
Modelling 192: 385-409.
Beier, P. 2012. Conceptualizing and designing corridors for
climate change. Ecological Restoration 30: 312-319.
Bevilacque, S., Sandulli, R., Plicanti, A. & Terlizzi,
A. 2012. Taxonomic distinctness in Mediterranean marine nematodes and its
relevance for environmental impact assessment. Marine Pollution Bulletin 64:
1409-1416.
Borcard, D., Legendre, P. & Drapeau, P. 1992.
Partialling out the spatial component of ecological variation. Ecology 73:
1045.
Clarke, K. & Warwick, R. 2001. A further biodiversity
index applicable to species lists: Variation in taxonomic distinctness. Marine
Ecology Progress Series 216: 265-278.
Clarke, K. & Warwick, R. 1999. The taxonomic
distinctness measure of biodiversity: Weighting of step lengths between
hierarchical levels. Marine Ecology Progress Series 184: 21-29.
Clarke, K. & Warwick, R. 1998. A taxonomic distinctness
index and its statistical properties. Journal of Applied Ecology 35:
523-531.
Forest, F., Grenyer, R., Rouget, M., Davies, T.J., Cowling,
R.M., Faith, D.P., Balmford, A., Manning, J.C., Procheş, S., van der Bank,
M., Reeves, G., Hedderson, T.A.J. & Savolainen, V. 2007. Preserving the
evolutionary potential of floras in biodiversity hotspots. Nature 445:
757-760.
Haddad, N. 2008. Finding the corridor more traveled. PNAS 105: 19569-19570.
He, T. 2013. Structural equation modelling analysis of
evolutionary and ecological patterns in Australian Banksia. Population
Ecology 55: 461-467.
Huang, J., Chen, B., Liu, C., Lai, J., Zhang, J. & Ma,
K. 2012. Identifying hotspots of endmeic woody seed plant diversity in China. Diversity
and Distributions 18: 673-688.
Keith, M., Chimimba, C., Reyers, B. & van Jaarsveld, A.
2005. Taxonomic and phylogenetic distinctiveness in regional conservation
assessments: A case study based on extant South African Chiroptera and
Carnivora. Animal Conservation 8: 279-288.
Lam, T. & Maguire, D. 2012. Structural equation
modeling: Theory and applications in forest management. International
Journal of Forestry Research 2012: 263953.
Legendre, P. 2007. Studying beta diversity: Ecological
variation partitioning by multiple regression and canonical analysis. Journal
of Plant Ecology 1: 3-8.
Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.F.
& He, F. 2009. Partitioning beta diversity in a subtropical broad-leaved
forest of China. Ecology 90: 663-674.
Leonard, D., Clarke, K., Somerfield, P. & Warwick, R.
2006. The application of an indicator based on taxonomic distinctness for UK
marine biodiversity assessments. Journal of Environment Management 78:
52-62.
Lindenmayer, D. & Nix, H. 1993. Ecological principles
for the design of wildlife corridors. Conservation Biology 7: 627-631.
Lindo, Z. & Winchester, N.N. 2009. Spatial and
environmental factors contributing to patterns in arboreal and terrestrial
oribatid mite diversity across spatial scales. Oecologia 160: 817-25.
Liu, H., Edwards, E., Freckleton, R. & Osborne, C. 2012.
Phylogenetic niche conservatism in C4 grasses. Oecologia 170: 835-845.
Losos, J. 2008. Phylogenetic niche conservatism,
phylogenetic signal and the relationship between phylogenetic relatedness and
ecological similarity among species. Ecology Letters 11: 995-1003.
McClanahan, T., Maina, J. & Muthiga, N. 2011.
Associations between climate stress and coral reef diversity in the western
Indian Ocean. Global Change Biology 17: 2023-2032.
Myers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G.
& Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858.
Pavao-Zuckerman, M. & Coleman, D. 2007. Urbanization
alters the functional composition, but not taxonomic diversity, of the soil
nematode community. Applied Soil Ecology 35: 329-339.
Perez-Losada, M. & Crandall, A. 2003. Can taxonomic
richness be used as a surrogate for phylogenetic distinctness indices for
ranking areas for conservation? Animal Biodiversity and Conservation 26:
77-84.
Pienkowski, M., Watkinson, A., Kerby, G., Warwick, R. &
Clarke, K. 1998. Taxonomic distinctness and environment assessment. Journal
of Applied Ecology 35: 532-543.
Qian, H. 2014. Contrasting relationships between clade age
and temperature along latitudinal versus elevational gradients for woody
angiosperms in forests of South America. Journal of Vegetation Science:
DOI: 10.1111/jvs.12175.
Qian, H. 2007. Relationships between plant and animal
species richness at a regional scale in China. Conservation Biology 21:
937-944.
Qian, H. & Kissling, W. 2010. Spatial scale and
cross-taxon congruence of terrestrial vertebrate and vascular plant species
richness in China. Ecology 91: 1172-1183.
Qian, H., Kissling, W., Wang, X. & Andrews, P. 2009.
Effects of woody plant species richness on mammal species richness in southern
Africa. Journal of Biogeography 36: 1685-1697.
R Development Core Team. 2013. R: A Language and Environment
for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.
Reich, P., Bakken, P., Carlson, D., Frelich, L., Friedman,
S. & Grigal, D. 2001. Influence of logging, fire, and forest type on
biodiversity and productivity in southern boreal forests. Ecology 82:
2731-2748.
Rosseel, Y. 2012. lavaan: An R package for structural
equation modeling. Journal of Statistical Software 48: 1-36.
Schweiger, O., Klotz, S., Durka, W. & Kuhn, I. 2008. A
comparative test of phylogenetic diversity indices. Oecologia 157:
485-495.
Wang, Z. & Chen, Y. 2009. Relationship between taxonomic
distinctness and environmental stress in terrestrial organisms at large spatial
scale: A study for insect family Ceratopogonidae in East Asia. Acta
Zoologica Bulgarica 61: 69-77.
Wiens, J. 2004. Speciation and ecology revisited:
Phylogenetic niche conservatism and the origin of species. Evolution 58:
193-197.
Williams, P., Gibbons, D., Margules, C., Rebelo, A.,
Humphries, C. & Pressey, R. 1996. A comparison of richness hotspots, rarity
hotspots, and complementary areas for conserving diversity of British birds. Conservation
Biology 10: 155-174.
*Pengarang
untuk surat-menyurat; email: youhua@ualberta.ca
|