Sains Malaysiana 45(7)(2016): 1041–1047
Leaching
and Freeze-Thaw Events Contribute to Litter Decomposition - A Review
(Kejadian
Larut Lesap dan Beku-Cair Menyumbang kepada Penguraian Sampah - Suatu Ulasan)
LIPING JIANG1,2, KAI YUE2, YULIAN YANG1 & QINGGUI WU1*
1Ecological Security
and Protection, Key Laboratory of Sichuan Province, Mianyang Normal University,
166, West Mianxing Road, Gaoxin District, Sichuan Province, Mianyang 621000,
P.R.
China
2Long-term Research
Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry
Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University,
Chengdu 611130,
P.R. China
Diserahkan: 6 November 2015/Diterima: 30 Januari 2016
ABSTRACT
Litter decomposition is vital for carbon and nutrient turnover in
terrestrial ecosystems, and this process has now been thoroughly demonstrated
to be regulated by various mechanisms. The total environment has been
continuously changing in recent decades, especially in high-latitude regions;
these alterations, however, profoundly contribute to the decomposition process,
but a comprehensive recognition has not available. Here we reviewed the
empirical observations and current knowledge regarding how hydrological
leaching and freeze-thaw events modulate early decomposition of plant litter.
Leaching contributes a considerable percentage of mass loss and carbon and
nutrient release in early stage of decomposition, but the magnitudes are
different between species levels depending on the chemical traits. Frequent
freezing and thawing events could positively influence decomposition rate in
cold biomes but also hamper soil decomposer and there is no general and
predictable pattern has been emerged. Further experiments should be manipulated
to estimate how the altered freezing and thawing effect on carbon and nutrient
release from plant litter to better understanding the changing environment on
litter decomposition.
Keywords: cold biomes; freeze-thaw; leaching; litter decomposition
ABSTRAK
Penguraian sampah adalah penting untuk pusing ganti karbon dan
nutrien dalam ekosistem daratan dan proses ini kini telah dibuktikan secara
terperinci dikawal oleh pelbagai mekanisme. Persekitaran secara keseluruhan
berterusan berubah sejak beberapa dekad kebelakangan ini terutamanya di kawasan
berlatitud tinggi; perubahan ini, walau bagaimanapun menyumbang secara mendalam
kepada proses penguraian, tetapi tidak terdapat suatu pengiktirafan yang
komprehensif. Di sini kami mengkaji cerapan empirik dan pengetahuan semasa
tentang bagaimana kejadian hidrologi larut lesap dan beku-cair memodulatkan
proses awal pereputan sampah loji. Larut lesap menyumbang kepada peratusan
kehilangan jisim dan karbon serta pelepasan nutrien yang agak besar pada
peringkat awal pereputan, tetapi magnitud tersebut berbeza antara tahap spesies
bergantung kepada sifat kimia. Kekerapan kejadian larut lesap dan beku-cair
boleh secara positif mempengaruhi kadar penguraian dalam biom sejuk tetapi juga
menghalang tanah diurai serta tidak terdapat pola umum dan boleh diramal yang
muncul. Uji kaji susulan harus dimanipulasi untuk menganggarkan bagaimanakah
kesan pengubahsuaian larut lesap dan beku-cair ke atas pembebasan karbon dan
nutrien dari loji sampah untuk memahami dengan lebih baik persekitaran yang
berubah-ubah kepada penguraian sampah.
Kata kunci: Beku-cair; biom sejuk; larut lesap;
penguraian sampah
RUJUKAN
Aerts, R. 1997. Climate, leaf litter chemistry and leaf
litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79: 439-449.
Andersson, S. & Nilsson, S.I. 2001. Influence of pH and
temperature on microbial activity, substrate availability of soil-solution
bacteria and leaching of dissolved organic carbon in a mor humus. Soil
Biology and Biochemistry 33: 1181-1191.
Andersson, S., Nilsson, S.I. & Saetre, P. 2000. Leaching
of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor
humus as affected by temperature and pH. Soil Biology and Biochemistry 32:
1-10.
Arctic Climate Impact Assessment. 2005. Arctic Climate
Impact Assessment-Scientific Report. Cambridge: Cambridge University Press.
Austin, A.T. & Ballaré, C.L. 2010. Dual role of lignin
in plant litter decomposition in terrestrial ecosystems. Proceedings of the
National Academy of Sciences of the United States of America 107:
4618-4622.
Baldwin, D.S. 1999. Dissolved organic matter and phosphorus
leached from fresh and ‘terrestrially’ aged river red gum leaves: implications
for assessing river-floodplain interactions. Freshwater Biology 41:
675-685.
Bernhard-Reversat, F. 1993. Dynamics of litter and organic
matter at the soil-litter interface in fast-growing tree plantations on sandy
ferralitic soils (Congo). Acta Oecologica 14: 179-195.
Bokhorst, S., Bjerke, J.W., Melillo, J., Callaghan, T.V.
& Phoenix, G.K. 2010. Impacts of extreme winter warming events on litter
decomposition in a sub-Arctic heathland. Soil Biology and Biochemistry 42(4):
611-617.
Brooks, P.D., Schmidt, S.K. & Williams, M.W. 1997.
Winter production of CO2 and N2O from alpine tundra: environmental controls
and relationship to inter-system C and N fluxes. Oecologia 110: 403-413.
Campbell, J.L., Mitchell, M.J. & Groffman, P.M.,
Christenson, L.M. & Hardy, J.P. 2005. Winter in northeastern North America:
a critical period for ecological processes. Fronters in Ecology and the
Environment 3: 314-322.
Christenson, L.M., Mitchell, M.J. & Groffman, P.M. &
Lovett, G.M. 2010. Winter climate change implications for decomposition in northeastern
forests: comparisons of sugar maple litter with herbivore fecal inputs. Global
Change Biology 16: 2589-2601.
Copper, E.J. 2014. Warmer shoeter winters disrupt arctic
terrestrial ecosystems. Annual Review of Ecology, Evolution and Systems 45:
271-295.
Cornwell, W.K., Cornelissen, J.H.C. Amatangelo, K.,
Dorrepaal, E., Eviner, V.T., Godoy, O., Hobbie, S.E., Hoorens, B., Kurokawa,
H., Pérez-Harguindeguy, N., Quested, H.M., Santiago, L.S., Wardle, D.A.,
Wright, I.J., Aerts, R., Allison, S.D., van Bodegom, P., Brovkin, V., Chatain,
A., Callaghan, T.V., Díaz, S., Garnier, E., Gurvich, D.E., Kazakou, E., Klein,
J.A., Read, J., Reich, P.B., Soudzilovskaia, N.A., Vaieretti, M.V. &
Westoby, M. 2008. Plant species traits are the predominant control on litter decomposition
rates within biomes worldwide. Ecology Letters 11: 1065-1071.
Cotrufo, M.F., Wallenstein, M.W., Boot, C.M., Denef, K.
& Paul, E. 2013. The microbial efficiency-matrix stabilization (MEMS)
framework integrates plant litter decomposition with soil organic matter
stabilization: do labile plant inputs form stable soil organic matter? Global
Change Biology 19: 988-995.
Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E.,
Haddix. M.L., Wall, D.H. & Parton, W.J. 2015. Formation of soil organic
matter via biochemical and physical pathwats of litter mass loss. Nature
Geoscience 8: 776-779.
Davidson, E.A. & Janssens, I.A. 2006. Temperature
sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165-173.
Deluca, T.H., Keeney, D.R. & Mccarty, G.W. 1992. Effect
of freeze-thaw events on mineralization of soil nitrogen. Biology and
Fertility of Soils 14: 116-120.
Edwards, A.C., Scalenghe, R. & Freppaz, M. 2007. Changes
in the seasonal snow cover of alpine regions and its effect on soil processes:
a review. Quaternary International 162-163: 172-181.
France, R., Culbert, H., Freeborough, C. & Peters, R.
1997. Leaching and early mass loss of boreal leaves and wood in oligotrophic
water. Hydrobiologia 345: 209-214.
Freppaz, M., Williams, B.L. & Edwards, A.C., Scalenghe,
R. & Zanini, E. 2007. Simulating soil freeze/thaw cycles typical of winter
alpine conditions: Implications for N and P availability. Applied Soil
Ecology 35(1): 247-255.
Ghani, A., Müller, K., Dodd, M. & Mackay, A. 2010.
Dissolved organic matter leaching in some contrasting New Zealand pasture
soils. European Journal of Soil Science 61: 525-538.
Ghani, A., Sarathchandra, U., Ledgard, S., Dexter, M. &
Lindsey. S. 2013. Microbial decomposition of leached or extracted dissolved
organic carbon and nitrogen from pasture soils. Biology and Fertility of
Soils 49: 747-755.
Groffman, P.M., Driscoll, C.T., Fahey, T.J., Hardy, J.P.,
Fitzhugh, R.D. & Tierney, G.L. 2001. Colder soils in a warmer world: a snow
manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56:
135-150.
Hafner, S.D., Groffman, P.M. & Mitchell, M.J. 2005.
Leaching of dissolved organic carbon, dissolved organic nitrogen, and other
solutes from coarse woody debris and litter in a mixed forest in New York
State. Biogeochemistry 74: 257-282.
Hagedorn, F. & Machwitz, M. 2007. Controls on dissolved
organic matter leaching from forest litter grown under elevated atmospheric. Soil
Biology and Biochemistry 39: 1759-1769.
Hansson, K., Kleja, D.B., Kalbitz, K. & Larsson, H.
2010. Amounts of carbon mineralised and leached as DOC during decomposition of
Norway spruce needles and fine roots. Soil Biology and Biochemistry 42:
178-185.
Henry, H.A.L. 2007. Soil freeze-thaw cycle experiments: trends,
methodological weaknesses and suggested improvements. Soil Biology and
Biochemistry 39: 977-986.
Hobbie, S., Nadelhoffer, K. & Högberg, P. 2002. A
synthesis: The role of nutrients as constraints on carbon balances in boreal
and arctic regions. Plant and Soil 242: 163-170.
Hobbie, S. & Chapin III, F.S. 1996. Winter regulation of
tundra litter carbon and nitrogen dynamics. Biogeochemistry 35: 327-338.
Lemma, B., Nilsson, I., Kleja, D.B., Olsson, M. &
Knicker, H. 2007. Decomposition and substrate quality of leaf litters and fine
roots from three exotic plantations and a native forest in the southwestern
highlands of Ethiopia. Soil Biology and Biochemistry 39: 2317-2328.
Makkonen,
M., Berg, M.P., Handa, I.T., Hättenschwiler, S., van Ruijven, J., van Bodegom,
P.M. & Aerts, R. 2012. Highly consistent effects of plant litter identity
and functional traits on decomposition across a latitudinal gradient. Ecology
Letters 15: 1033-1041.
Melillo, J.M., Aber,
J.D. & Muratore, J.F. 1982. Nitrogen and lignin control of hardwood leaf
litter decomposition dynamics. Ecology 63: 621-626.
Nykvist, N. 1963. Leaching and decomposition of
water-soluble organic substances from different types of leaf and needle
litter. Studia Forestalia Suecica 3: 1-31.
Nykvist, N. 1962. Leaching and decomposition of litter V.
Experiments on leaf litter of Alnus glutinosa, Fagus silvatica and Quercus
robur. Oikos 13: 232-248.
Nykvist, N. 1961a. Leaching and decomposition of litter.
III. Experiments on leaf litter of Betula verrucosa. Oikos 12:
249-263.
Nykvist, N. 1961b. Leaching and decomposition of litter. IV.
Experiments on needle litter of Picea abies. Oikos 12: 264- 279.
Nykvist, N. 1959a. Leaching and decomposition of litter I.
Experiments on leaf litter of Fraxinus excelsior. Oikos 10:
190-211.
Nykvist, N. 1959b. Leaching and decomposition of litter II.
Experiments on needle litter of Pinus silvestris. Oikos 10:
212-224.
Prescott, C.E. 2005. Litter decomposition: what controls it
and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101: 133-149.
Preston, C.M., Nault, J.R. Trofymow, J.A. & Smyth, C.E.
2009. Chemical changes during 6 years of decomposition of 11 sites in some
Canadian forest sites. Part 1. Elemental composition, tanins, phenolics, and proximate
fractions. Ecosystems 12: 1053-1077.
Qualls, R.G. 2005. Biodegradability of fractions of
dissolved organic carbon leached from decomposing leaf litter. Environmental
Science and Technology 39: 1616-1622.
Robinson, C. 2002. Controls on decomposition and soil
nitrogen availability at high latitudes. Plant and Soil 242: 65-81.
Robinson, C.H. 2001. Cold adaptation in Arctic and Antarctic
fungi. New Phytologist 151: 341-353.
Schimel, J.P. & Mikan, C. 2005. Changing microbial
substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil
Biology and Biochemistry 37: 1411-1418.
Schreeg, L.A., Mack, M.C. & Turner, B.L. 2013.
Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical
woody species. Ecology 94: 94-105.
Sinsabaugh, R.L., Carreiro, M.M. & Repert, D.A. 2002.
Allocation of extracellular enzymatic activity in relation to litter
composition, N deposition, and mass loss. Biogeochemistry 60: 1-24.
Sjursen, H., Michelsen, A. & Holmstrup, M. 2005. Effects
of freeze-thaw cycles on microarthropods and nutrient availability in a
sub-Arctic soil. Applied Soil Ecology 28: 79-93.
Taylor, B.R. & Parkinson, D. 1988. Does repeated
freezing and thawing accelerate decay of leaf litter? Soil Biology and
Biochemistry 20: 657-665.
Uchidaa, M., Mo, W., Nakatsubo, T., Tsuchiya, Y., Horikoshi,
T. & Koizumi, H. 2005. Microbial activity and litter decomposition under
snow cover in a cool-temperate broad-leaved deciduous forest. Agricultural
and Forest Meteorology 134: 102-109.
Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H.,
van der Putten, W.H. & Wall, D.H. 2004. Ecological linkages between
aboveground and belowground biota. Science 304: 1629-1633.
Wu, F., Peng, C., Zhu, J., Jian, Z., Tan, B. & Wanqin,
Y. 2014. Impact of changes in freezing and thawing on foliar litter carbon
release in alpine/subalpine forests along an altitudinal gradient in the
eastern Tibetan Plateau. Biogeosciences 11: 9539-9564.
Wu, F., Yang, W., Zhang, J. & Deng, R. 2010. Litter
decomposition in two subalpine forests during the freeze-thaw season. Acta
Oecologica 36: 135-140.
Xia, L., Wu, F.Z., Yang, W.Q. & Tan, B. 2012.
Contribution of soil fauna to the mass loss of Betula albosinensis leaf
litter at early decompostion stage of subalpine forest litter in western
Sichuan. Acta Ecologica Sinica 23: 301-306.
Yanai, Y., Toyota, K. & Okazaki, M. 2004. Effects of
successive soil freeze-thaw cycles on soil microbial biomass and organic matter
decomposition potential of soils. Soil Science and Plant Nutrition 50:
821-829.
Yang, G.R., Zhang, X.Q., Cai, D.S., Shi, X.H., Zhang, H.
& Huang, C.B. 2012. Litter decomposition of dominant plantations in Guangxi
and its effects on leachate quality. Chinese Journal of Applied Ecology 23:
9-16 (in Chinese with English abstract).
Yang, Q., Xu, M., Chi, Y., Zheng, Y., Shen, R. & Wang,
S. 2014. Effects of freeze damage on litter production, quality and
decomposition in a loblolly pine forest in central China. Plant and Soil 374:
449-458.
Zhu, J., He, X., Wu, F., Yang, W. & Tan, B. 2012.
Decomposition of Abies faxoniana litter varies with freeze–thaw
stages and altitudes in subalpine/alpine forests of southwest China. Scandinavian
Journal of Forest Research 27: 586-596.
*Pengarang
untuk surat-menyurat; email: qgwu30@163.com
|