Sains Malaysiana 46(2)(2017): 189–195
http://dx.doi.org/10.17576/jsm-2017-4602-02
Nitric
Oxide Increases Pb Tolerance by Lowering Pb Uptake and Translocation
as well as Phytohormonal Changes in Cowpea (Vigna unguiculata
(L.) Walp.)
(Nitrik
Oksida Meningkatkan Toleransi Pb dengan Menurunkan pengambilan Pb
dan Translokasi serta Perubahan Fitohormon dalam Kacang Panjang
(Vigna unguiculata (L.) Walp.))
OMID SADEGHIPOUR*
Department of Agronomy, Yadegar-e-Imam Khomeini (RAH)
Shahre-rey Branch
Islamic Azad University, Tehran, Iran
Diserahkan: 11 Ogos 2015/Diterima: 16 Mei 2016
ABSTRACT
Lead (Pb) is one of the most abundant toxic heavy metals which
adversely affected growth and yield of crop plants. Nitric oxide (NO),
an endogenous signaling molecule, has been suggested to be involved in defense
responses to biotic and abiotic stresses in plants. The present study was done
to induce Pb tolerance in cowpea plants by exogenous NO application
using two levels of Pb, 0 and 200 mg Pb (NO3)2 kg-1 soil
and three NO levels, 0, 0.5 and 1 mM sodium nitroprusside (SNP),
as NO donor. The results showed that Pb treatment caused a
significant increase in Pb concentration in all plant parts. Roots had higher
levels of Pb than the stems, leaves and seeds. Furthermore, lead toxicity
reduced auxin (IAA), cytokinin and gibberellic acid
(GA3) content but increased abscisic acid (ABA)
level. Moreover Pb stress decreased stomatal conductance, leaf area and
consequently seed yield of cowpea. Exogenous application of NO at
0.5 mM noticeably alleviated the lead toxicity by improving the leaf area,
stomatal conductance and seed yield. NO increased Pb tolerance by
lowering Pb uptake and translocation, enhancing the promoting phytohormone (IAA,
cytokinin and GA3) level and reducing ABA content.
Keywords: Leaf area; Pb toxicity; plant hormones; seed yield;
stomatal conductance
ABSTRAK
Plumbum (Pb) merupakan salah satu logam berat toksik paling banyak
yang telah menjejaskan pertumbuhan dan hasil tanaman tumbuhan. Nitrik oksida (NO),
molekul isyarat endogen disyaki terlibat dalam tindakan pertahanan terhadap
stres biotik dan abiotik dalam tumbuh-tumbuhan. Kajian ini dijalankan untuk
mengaruh toleransi Pb dalam tumbuhan kacang panjang dengan aplikasi NO eksogen
menggunakan dua tahap Pb, 0 dan 200 mg Pb (NO3)2 kg-1 tanih
dan tiga peringkat NO, 0, 0.5 dan 1 mM sodium nitroprusid
(SNP),
sebagai penderma NO. Keputusan kajian menunjukkan
bahawa rawatan Pb telah menyebabkan peningkatan ketara dalam kepekatan Pb pada
semua bahagian tumbuhan. Akar mempunyai tahap Pb yang lebih tinggi daripada
batang, daun dan biji benih. Selain itu, ketoksikan plumbum mengurangkan
kandungan auksin (IAA), sitokinin dan asid giberelik (GA3)
tetapi meningkatkan tahap asid absisik (ABA). Tambahan pula tekanan Pb
mengurangkan konduktans stoma, keluasan daun dan penghasilan biji benih kacang
panjang. Aplikasi eksogen NO pada 0.5 mM didapati mengurangkan
keracunan plumbum dengan memperbaiki keluasan daun, konduktans stoma dan hasil
biji benih. NO meningkatkan toleransi Pb dengan mengurangkan
penyerapan Pb dan translokasi, menggalakkan peningkatan tahap fitohormon (IAA,
sitokinin dan GA3) serta mengurangkan kandungan ABA.
Kata kunci: Hasil benih;
hormon tumbuhan; keluasan daun; ketoksikan PB; konduktans stoma
RUJUKAN
An, L., Liua, Y., Zhanga, M., Chen, T. &
Wang, X. 2005. Effects of nitric oxide on growth of maize seedling leaves in
the presence or absence of ultraviolet-B radiation. Journal of Plant
Physiology 162: 317-326.
Atici, O., Agar, G. & Battal, P. 2005.
Changes in phytohormone contents in chickpea seeds germinating under lead or
zinc stress. Biologia Plantarum 49(2): 215-222.
Ayanwuyi, E. & Akintonde, J.O. 2012. Effect
of climate change on cowpea production in kuje area council, abuja, nigeria. International
Journal of Advanced Research in Management and Social Sciences 1(2):
273-283.
Balba, A.M., El Shibiny, G. & El Khatib, E.
1991. Effect of lead increments on the yield and lead content of tomato plants. Water, Air & Soil Pollution 57-58(1): 93-99.
Beligni, M.V. & Lamattina, L. 2000. Nitric
oxide stimulates seed germination and de-etiolation and inhibits hypocotyls
elongation, three light inducible responses in plants. Planta 210:
215-221.
Bhardwaj, P., Chaturvedi, A.K. & Prasad, P.
2009. Effect of enhanced lead and cadmium in soil on physiological and
biochemical attributes of Phaseolus vulgaris L. Natural Science 7(8):
63-75.
Bharwana, S.A., Ali, S., Farooq, M.A., Iqbal,
N., Hameed, A., Abbas, F. & Ahmad, M.S.A. 2014. Glycine betaine-induced
lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes
suppressed lead uptake and oxidative stress in cotton. Turkish Journal of
Botany 38: 281-292.
Cenkci, S., Cigerci, I.H., Yildiz, M., Özay, C.,
Bozdag, A. & Terzi, H. 2010. Lead contamination reduces chlorophyll
biosynthesis and genomic template stability in Brassica rapa L. Environmental
and Experimental Botany 67(3): 467-473.
Chatterjee, C., Dube, B.K., Sinha, P. &
Srivastava, P. 2004. Detrimental effects of lead phytotoxicity on growth, yield
and metabolism of rice. Communications in Soil Science and Plant Analysis 35:
255-265.
Eick, M.J., Peak, J.D., Brady, P.V. & Pesek,
J.D. 1999. Kinetics of lead absorption/ desorption on goethite: residence time
effect. Soil Science 164: 28-39.
Elzbieta, W. & Miroslawa, C. 2005.
Lead-induced histological and ultrastructural changes in the leaves of soybean
(Glycine max (L.) Merr.). Soil Science and Plant Nutrition 51(2):
203-212.
Esim, N. & Atici, O. 2013. Nitric oxide alleviates boron
toxicity by reducing oxidative damage and growth inhibition in maize seedlings (Zea mays L.). Australian
Journal of Crop Science 7(8): 1085-1092.
Fernandes, J.E. & Henriques, F.S. 1991. Biochemical,
physiological and structural effects of excess copper in plants. Botanical
Review 57: 246-273.
Garcia-Mata, C. & Lamattina, L. 2001. Nitric oxide
induces stomatal closure and enhances the adaptive plant responses against
drought stress. Plant Physiology 126: 1196-1204.
Gouvea, C.M.C.P., Souza, J.F., Magalhaes, C.A.N. &
Martins, I.J. 1997. NO-releasing substances that induce growth elongation in
maize root segments. Plant Growth Regulation 21: 183-187.
Habib, N., Ashraf, M. & Shahbaz, M. 2013. Effect of
exogenously applied nitric oxide on some key physiological attributes of rice (Oryza
sativa L.) plants under salt stress. Pakistan Journal of Botany 45(5):
1563-1569.
Hasanuzzaman, M., Nahar, K., Alam, M.M. & Fujita, M.
2012. Exogenous nitric oxide alleviates high temperature induced oxidative
stress in wheat (Triticum aestivum L.) seedlings by modulating the
antioxidant defense and glyoxalase system. Australian Journal of Crop
Science 6(8): 1314-1323.
Hayat, S., Hasan, S.A., Mori, M., Fariduddin, Q. &
Ahmad, A. 2010. Nitric Oxide in Plant Physiology. Nitric Oxide: Chemistry,
Biosynthesis, and Physiological Role. Weinheim: Wiley-VCH Verlag GmbH &
Co. KGaA.
He, J.M., Xu, H., She, X.P., Song, X.G. & Zhao, W.M.
2005. The role and the interrelationship of hydrogen peroxide and nitric oxide
in the UV-B-induced stomatal closure in broad bean. Functional Plant Biology 32: 237-247.
Hussain, M., Ahmad, M.S.A. & Kausar, A. 2006. Effect of
lead and chromium on growth, photosynthetic pigments and yield components in
mash bean [Vigna mungo (L.) Hepper]. Pakistan Journal of Botany 38:
1389-1396.
Iqbal, J. & Mushtaq, S. 1987. Effect of lead on germination,
early seedling growth, soluble protein and acid phosphatase content in Zea
mays. Pakistan Journal of Scientific and Industrial Research 30:
853-856.
Islam, E., Yang, X., Li, T., Liu, D., Jin, X. & Meng, F.
2007. Effect of Pb toxicity on root morphology, physiology and ultrastructure
in the two ecotypes of Elsholtzia argyi. Journal of Hazardous
Materials 147(3): 806-816.
Jhanji, S., Setia, R.C., Kaur, N., Kaur, P. & Setia, N.
2012. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic
components and yield of Brassica napus L. Journal of Environmental
Biology 33: 1027-1032.
Jiang, W. & Liu, D. 2010. Pb-induced cellular defense
system in the root meristematic cells of Allium sativum L. BMC Plant
Biology 10: 40.
Kausar, F., Shahbaz, M. & Ashraf, M. 2013. Protective
role of foliar-applied nitric oxide in Triticum aestivum under saline
stress. Turkish Journal of Botany 37: 1155-1165.
Kopittke, P.M., Asher, C.J., Kopittke, R.A. & Menzies,
N.W. 2007. Toxic effects of Pb2+ on
growth of cowpea (Vigna unguiculata). Environmental Pollution 150(2):
280-287.
Kumari, A., Sheokand, S. & Swaraj, K. 2010. Nitric oxide
induced alleviation of toxic effects of short term and long term Cd stress on
growth, oxidative metabolism and Cd accumulation in chickpea. Brazilian
Journal of Plant Physiology 22(4): 271-284.
Lane, S.D. & Martin, E.S. 1977. A histochemical
investigation of lead uptake in Raphanus sativus. New Phytologist 79(2):
281-286.
Liao, Y., Chien, S.C., Wang, M., Shen, Y., Hung, P. &
Das, B. 2006. Effect of transpiration on Pb uptake by lettuce and on water
soluble low molecular weight organic acids in rhizosphere. Chemosphere 65(2):
343-351.
Liu, X., Wang, L., Liu, L., Guo, Y. & Ren, H. 2011.
Alleviating effect of exogenous nitric oxide in cucumber seedling against
chilling stress. African Journal of Biotechnology 10(21): 4380-4386.
Marschner, H. 1995. Mineral Nutrition of Higher Plants.
2nd ed. New York: Academic Press.
Nagajyoti, P.C., Lee, K.D. & Sreekanth, T.V.M. 2010.
Heavy metals, occurrence and toxicity for plants: A review. Environmental
Chemistry Letters 8: 199-216.
Neill, S.J., Desikan, R. & Hancock, J. 2003. Nitric
oxide as a mediator of ABA signaling in stomatal guard cells. Bulgarian
Journal of Plant Physiology (Special Issue): 124-132.
Pagnussat, G., Simontachi, M., Puntarulo, S. &
Lamattina, L. 2002. Nitric oxide is required for root organogenesis. Plant
Physiology 129: 954-956.
Pourrut, B., Shahid, M., Dumat, C., Winterton, P. &
Pinelli, E. 2011. Lead uptake, toxicity, and detoxification in plants.
Reviews of Environmental Contamination and Toxicology 213: 113-136.
Seregin, I.V., Shpigun, L.K. & Ivanov, V.B. 2004.
Distribution and toxic effects of cadmium and lead on maize roots. Russian
Journal of Plant Physiology 51(4): 525-533.
Sharma, P. & Dubey, R.S. 2005. Lead toxicity in plants. Brazilian
Journal of Plant Physiology 17(1): 35-52.
Shehab, G.G., Ahmed, O.K. & EL-Beltagi, H.S. 2010.
Effects of various chemical agents for alleviation of drought stress in rice
plants (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici
Cluj-Napoca 38(1): 139-148.
Shindy, W.W. & Smith, O.E. 1975. Identification of plant
hormones from cotton ovules. Plant Physiology 55: 550-554.
Singh, P.H., Kaur, S., Daizy, R., Batish, V.P., Sharma, N.
& Kohli, R.K. 2009. Nitric oxide alleviates arsenic toxicity by reducing
oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:
289-297.
Tan, J., Zhao, H., Hong, J., Han, Y., Li, H. & Zhao, W.
2008. Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity
and proline accumulation in wheat seedlings subjected to osmotic stress. World
Journal of Agricultural Sciences 4(3): 307-313.
Tanton, T.W. & Crowdy, S.H. 1971. The distribution of
lead chelate in the transpiration stream of higher plants. Pesticide Science 2(5): 211-213.
Verbruggen, N., Hermans, C. & Schat, H. 2009. Molecular
mechanisms of metal hyperaccumulation in plants. New Phytologist 181:
759-776.
Veselov, D., Kudoyarova, G., Symonyan, M. & Veselov,
S.T. 2003. Effect of cadmium on ion uptake, transpiration and cytokinin content
in wheat seedlings. Bulgarian Journal of Plant Physiology (Special
Issue): 353-359.
Wang, Y.S. & Yang, Z.M. 2005. Nitric oxide reduces
aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant and Cell Physiology 46: 1915-1923.
Yakhin,
O.I., Yakhin, I.A., Lubyanov, A.A. & Vakhitov, V.A. 2009. Effect of cadmium
on the content of phytohormones and free amino acids, its cytogenetic effect,
and accumulation in cultivated plants. Doklady Biological Sciences 426:
274- 277.
*Pengarang
untuk surat-menyurat; email: osadeghipour@yahoo.com
|