Sains Malaysiana 46(2)(2017): 197–207
http://dx.doi.org/10.17576/jsm-2017-4602-03
Distribution
and Temporal Behaviour of O3 and
NO2 Near Selected Schools in Seberang
Perai, Pulau Pinang and Parit Buntar, Perak, Malaysia
(Sifat Taburan
dan Masa O3 dan NO2 Berdekatan Sekolah-sekolah Terpilih di Seberang
Perai, Pulau Pinang dan Parit Buntar, Perak, Malaysia)
NAZATUL SYADIA ZAINORDIN*, NOR AZAM RAMLI
& MAHER ELBAYOUMI
Environmental Assessment and Clean Air Research, School of
Civil Engineering, Engineering Campus, Universiti Sains Malaysia,
14300 Nibong Tebal, Pulau Pinang, Malaysia
Diserahkan: 11 Januari 2016/Diterima: 9 Mei 2016
ABSTRACT
Air quality has deteriorated in urban areas as a result of increased
anthropogenic activities. Quantitative information on the influence
of meteorological conditions on several pollutants in a tropical
climate is still lacking. Real-time ozone (O3)
and nitrogen dioxide (NO2) levels were measured
nearby selected schools in Malaysia to examine the impact of meteorological
factors on monitoring pollutants. The results showed the overall
10 min average concentrations of the main parameters during school
holiday were 24 ppb (O3)
and 33 ppb (NO2) while during school day the
overall 10 min average concentrations were 26 ppb (O3)
and 51 ppb (NO2). Although there are no minimum
requirements for short-term exposure by MAAQG,
if compared to 1 h average requirements, all concentrations were
still below the suggested values. Regarding spatial distribution,
a different trend in pollutant concentration among the schools was
observed because of the influence of temperature (AT) and wind speed (WS).
The results were verified by Pearson correlation, where significant correlations (p<0.01) were
determined between air pollutants and meteorological factors, which
were temperature, wind speed and relative humidity. Meanwhile, the
distribution of O3
was moderately correlated with NO2. However, the results
of multivariate analysis indicate that temperature and relative
humidity had the most significant influence on the formation of
O3.
In summary, the results of this study showed that all precursors
and meteorological parameters contribute to the production of O3.
Hence, reducing O3 precursors,
which are emitted by vehicles, is essential to lessening the exposure
to O3.
Keywords: Downwind transport; meteorological parameters; nitrogen
oxide; ozone; wet condition
ABSTRAK
Kualiti udara telah merosot di kawasan bandar akibat
daripada peningkatan aktiviti antropogen. Maklumat kuantitatif terhadap
pengaruh keadaan meteorologi kepada beberapa pencemar dalam iklim
tropika masih kurang. Kadar ozon (O3)
dan nitrogen dioksida (NO2) pada masa sebenar telah
diukur berdekatan beberapa sekolah yang telah dipilih di Malaysia
untuk menilai kesan factor meteorologi terhadap pencemar yang dipantau.
Keputusan menunjukkan kepekatan purata 10 min keseluruhan bagi parameter
utama semasa cuti sekolah adalah 24 ppb (O3) dan 33 ppb (NO2)
sementara semasa hari sekolah adalah 26 ppb (O3)
dan 51 ppb (NO2). Walaupun tiada syarat minimum
untuk pendedahan jangka pendek, jika dibandingkan dengan syarat
purata 1 jam, kesemua kepekatan ini masih di bawah nilai yang disarankan
oleh Garis Panduan Kualiti Udara Malaysia (MAAQG). Mengenai
taburan reruang, perbezaan trend bagi kepekatan pencemar antara
sekolah-sekolah diperhatikan, disebabkan pengaruh suhu dan kelajuan
angin. Keputusan telah dibuktikan melalui korelasi Pearson,
dengan korelasi ketaranya (p<0.01) ditentukan antara
pencemar udara dan faktor meteorologi, iaitu suhu, kelajuan angin
dan kelembapan relatif. Sementara itu, taburan
kepekatan O3
adalah berkolerasi sederhana dengan kepekatan NO2.
Namun begitu, keputusan daripada analisis multivariat
menunjukkan suhu dan kelembapan relatif mempunyai pengaruh yang
paling ketara dalam pembentukan O3. Secara
ringkas, keputusan daripada kajian ini menunjukkan bahawa semua
prapenanda O3
dan parameter meteorologi menyumbang kepada penghasilan
O3.
Justeru itu, pengurangan prapenanda O3
yang dihasilkan oleh kenderaan adalah sangat penting
dalam mengurangkan pendedahan terhadap pencemaran O3.
Kata kunci: Keadaan lembap; nitrogen dioksida;
ozon; parameter meteorologi; pembawaan angina
RUJUKAN
Abdul-Wahab, S.A., Bakheit, C.S. &
Al-Alawi, S.M. 2005. Principal component
and multiple regression analysis in modelling of ground-level ozone
and factors affecting its concentrations. Environmental Modelling
& Software 20(10): 1263-1271.
Alghamdi, M., Khoder, M., Harrison,
R.M., Hyvärinen, A.P., Hussein, T., Al-Jeelani, H. & Almehmadi, F. 2014. Temporal variations of O3 and
NOx in the urban background atmosphere of the coastal city
Jeddah, Saudi Arabia. Atmospheric Environment 94: 205-214.
Atkinson, R.W., Yu, D., Armstrong, B.G., Pattenden, S.,
Wilkinson, P., Doherty, R.M., Heal, M.R. & Anderson, H.R. 2012.
Concentration-response function for ozone and daily mortality: Results from
five urban and five rural U.K. populations. Environmental Health
Perspectives 120(10): 1411-1417.
Awang, N.R., Elbayoumi, M., Ramli, N.A.
& Yahaya, A.S. 2015. Diurnal
variations of ground-level ozone in three port cities in Malaysia. Air
Quality, Atmosphere and Health DOI10.1007/ S11869-015-0334-7.
Beauchamp, J., Wisthaler, A., Grabmer, W., Neuner, C.,
Weber, A. & Hansel, A. 2004. Short-term measurements of
CO, NO, NO2, organic compounds and PM10 at
a motorway location in an Austrian valley. Atmospheric Environment 38:
2511-2522.
Banan, N., Latif, M.T., Juneng, L.
& Ahamad, F. 2013. Characteristics
of surface ozone concentrations at stations with different backgrounds in the
Malaysian Peninsula. Aerosol and Air Quality Research 13:
1090-1106.
Department of Statistic Malaysia. 2013. Penang Basic Information 2013.
Dueñas, C., Fernandez, M., Canete, S.,
Carretero, J. & Liger, E. 2004. Analyses of ozone in urban and rural sites in Málaga (Spain). Chemosphere 56(6): 631-639.
Elbayoumi, M., Ramli, N.A., Md Yusof,
N.F.F., Yahaya, A.S.B., AlMadhoun, W. & Ul-Saufie, A.Z. 2014. Multivariate methods for indoor PM10 and
PM2.5 modelling in naturally ventilated schools buildings. Atmospheric
Environment 94: 11-12.
Ghazali, N.A., Ramli, N.A., Yahaya,
A.S., Yusof, N.F.F.M.D., Sansuddin, N. & Al Madhoun, W.A. 2010. Transformation of nitrogen dioxide into
ozone and prediction of ozone concentrations using multiple linear regression
techniques. Environmental Monitoring and Assessment 165(1):
475-489.
Gorai, A.K., Tuluri, F., Tchounwou, P.B. & Ambinakudige,
S. 2015. Influence of local meteorology and NO2 conditions
on ground-level ozone concentrations in the eastern part of Texas, USA. Air
Quality, Atmospheric and Health 8: 81-96.
Hassan, I.A., Basahi, J.M., Ismail,
I.M. & Habeebullah, T.M. 2013. Spatial distribution and temporal variation in ambient ozone and
its associated NOx in the atmosphere of Jeddah City, Saudi Arabia. Aerosol
and Air Quality Research 13(6): 1712-1722.
Jenkin, M.E. & Clemitshaw, K.C. 2000. Ozone and other
secondary photochemical pollutants: Chemical processes governing their
formation in the planetary boundary layer. Atmospheric Environment 34:
2499-2527.
Kleanthous, S., Vrekoussis, M., Mihalopoulos, N., Kalabokas,
P. & Lelieveld, J. 2014. On the temporal and spatial
variation of ozone in Cyprus. Science of the Total Environment 476:
677-687.
Kovač-Andrić, E., Brana, J.
& Gvozdić, V. 2009. Impact of meteorological factors on ozone concentrations modelled
by time series analysis and multivariate statistical methods. Ecological
Informatics 4(2): 117-122.
Lal, S., Naja, M. & Subbaraya, B.H.
2000. Seasonal variations in surface ozone and
its precursors over an urban site in India. Atmospheric Environment 34:
2713-2724.
Latha, K.M. &
Badarinath, K.V.S. 2004. Correlation between black carbon
aerosols, carbon monoxide and tropospheric ozone over a tropical urban site. Atmospheric Research 71: 265-274.
Latif, M.T., Huey, L.S. & Juneng,
L. 2012. Variations of
surface ozone concentration across the Klang Valley, Malaysia. Atmospheric
Environment 61: 434-445.
Lazaridis, M. 2011. First Principles of
Meteorology and Air Pollution. New York and London: Springer.
Lee, B.K., Juna, N.Y. & Lee, H.K.
2004. Comparison of
particulate matter characteristics before, during, and after Asian dust events
in Incheon and Ulsan, Korea. Atmospheric Environment 38:
1535-1545.
Mayer, H., Haustein, C. &
Matzarakis, A. 1999. Urban air pollution
caused by motor-traffic. Air Pollution VII.WIT PRESS. Advances
in Air Pollution 6: 251-260.
Rahman, S.R.A., Ismail, S.N.S., Ramli,
M.F., Latif, M.T., Abidin, E.Z. & Praveena, S.M. 2015. The assessment of ambient air pollution
trend in Klang Valley, Malaysia. World Environment 5(1): 1-11.
Road Transport Department Malaysia. 2013. Total Motor
Vehicles by Type and State, Malaysia.
Seinfeld, J. & Pandis, S. 2006. Atmospheric Chemistry
and Physics: From Air Pollution to Climate Change 2nd ed.
New Jersey: John Wiley & Sons, Inc.
Shen, Z., Ha, Y., Cao, J., Tian, J.,
Zhu, C., Liu, S., Liu, P. & Wang, Y. 2010. Characteristics of traffic-related emissions: A case study
in roadside ambient air over Xi’an, China. Aerosol and Air Quality Research 10:
292-300.
Tawfik, A.B. & Steiner, A.L. 2013. A
proposed physical mechanism for ozone-meteorology correlations using
land-atmosphere coupling regimes. Atmospheric Environment 72:
50-59.
Toh, Y.Y., Lim, S.F. & von Glasow, R. 2013. The influence of meteorological factors and biomass burning on
surface ozone concentrations at Tanah Rata, Malaysia. Atmospheric
Environment 70: 435-446.
Unal, A., Rouphail, N.M. & Frey,
H.C. 2003. Effect of arterial signalization and
level of service on measured vehicle emissions. 82nd
Annual Meeting of the Transportation Research Board. pp.
47-56.
Wang, Y., Hopke, P.K. & Utell, M.J. 2011. Urban-scale spatial-temporal variability of black carbon and winter
residential wood combustion particles. Aerosol and Air Quality
Research 11: 473-481.
Wilson, J.G., Kinghama, S., Pearcea, J.
& Sturman, A.P. 2005. A review
of intraurban variations in particulate air pollution: Implications for
epidemiological research. Atmospheric Environment 39: 6444-646.
*Pengarang
untuk surat-menyurat; email: nazatulsyadia@yahoo.com
|