Sains Malaysiana 51(11)(2022): 3567-3578
http://doi.org/10.17576/jsm-2022-5111-05
Strategi Pengoptimuman Lanjutan untuk Meningkatkan Penghasilan Biohidrogen
Foto-fermentasi oleh Bakteria Ungu Bukan Sulfur
(Advanced Optimization Strategies to Enhance Photo-fermentative Biohydrogen Production by Non-Sulfur Purple Bacteria)
MING FOONG TIANG1, ARINA
ATIQAH AZHAR1, MUHAMMAD ALIF FITRI HANIPA1, PEER MOHAMED
ABDUL1,2,*, MOHD SHAIFUL SAJAB1,2,
DARMAN NORDIN1, SAFA SENAN MAHMOD1, ABDULLAH AMRU INDERA LUTHFI1 & JAMALIAH MD.
JAHIM1,2
1Department of Chemical and Process
Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Research Centre for Sustainable
Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 29 September 2021/Diterima: 16 Jun 2022
Abstrak
Proses foto-fermentasi ialah suatu laluan penghasilan hidrogen yang menarik. Walau bagaimanapun, didapati bahawa kecekapan penukaran cahaya dan penghasilan biohidrogen foto-fermentasi oleh bakteria ungu bukan sulfur (PNSB) adalah sangat rendah. Maka, pelbagai pendekatan pengoptimuman telah dikaji bagi meningkatkan penghasilan foto-hidrogen dan prestasi keseluruhannya. Ulasan ini membincangkan strategi pengoptimuman lanjutan untuk meningkatkan penghasilan biohidrogen foto-fermentasi secara menyeluruh. Antara strategi yang dibincangkan merangkumi pengoptimuman makronutrien dalam media penghasilan biohidrogen, faktor abiotik dan rejim pencahayaan semasa proses foto-fermentasi berlaku. Pendekatan ini menunjukkan keputusan positif dalam meningkatkan penghasilan foto-hidrogen oleh PNSB. Pendekatan gabungan yang mengintegrasikan strategi pengoptimuman individu yang berbeza dipercayai mungkin dapat mendatangkan peningkatan yang sinergistik terhadap produktiviti dan hasil biohidrogen foto-fermentasi oleh PNSB.
Kata kunci: Bakteria ungu bukan sulphur; faktor abiotik; foto-fermentasi; media penghasilan biohidrogen; rejim pencahayaan
Abstract
Photo-fermentation
seems to be an attractive hydrogen production route. However, the light
conversion efficiency and photo-fermentative biohydrogen production of purple non-sulphur bacteria (PNSB) are suboptimally low, and hence, various optimisation approaches are investigated to improve
overall performance and photo-hydrogen production. This review presents an
overview of the optimisation strategies applied to enhance the photo-fermentative biohydrogen production. Among the strategies
discussed include the optimisation of the macronutrient in biohydrogen production medium, abiotic factors and the lighting regime during
photo-fermentation. These approaches show positive results in the enhancement
of photo-hydrogen production by PNSB. It is believed that the combined approach
of integrating individual strategies will be able to bring synergistic
improvement on the productivity and biohydrogen yield
of photo-fermentation by PNSB.
Keywords: Abiotic factors; biohydrogen production
medium; lighting regime; photo-fermentation; purple non-sulphur bacteria
RUJUKAN
Abdul, P.M., Md. Jahim, J., Harun, S., Markom, M., Hassan, O., Mohammad,
A.W. & Asis, A.J. 2013. Biohydrogen production from pentose-rich oil palm
empty fruit bunch molasses: A first trial. International Journal of Hydrogen
Energy 38(35): 15693-15699.
Adessi, A. & De Philippis, R. 2014. Photobioreactor design and
illumination systems for H2 production with anoxygenic
photosynthetic bacteria: A review. International Journal of Hydrogen Energy 39(7): 3127-3141.
Akroum-Amrouche, D., Abdi, N., Lounici, H. & Mameri, N. 2013.
Biohydrogen production by dark and photo-fermentation processes. Proceedings
of 2013 International Renewable and Sustainable Energy Conference. pp.
499-503.
Akroum-Amrouche, D., Abdi, N., Lounici, H. & Mameri, N. 2011. Effect
of physico-chemical parameters on biohydrogen production and growth
characteristics by batch culture of Rhodobacter
sphaeroides CIP 60.6. Applied Energy 88(6): 2130-2135.
Androga, D.D., Sevinç, P., Koku, H., Yücel, M., Gündüz, U., Eroǧlu,
I. & Eroglu, I. 2014. Optimization of temperature and light intensity for
improved photofermentative hydrogen production using Rhodobacter capsulatus DSM 1710. International Journal of Hydrogen
Energy 39(6): 2472-2480.
Anwar, M., Lou, S., Chen, L., Li, H. & Hu, Z. 2019. Recent advancement
and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresource
Technology 292: 121972.
Argun, H. & Kargi, F. 2010a. Effects of light source, intensity and
lighting regime on bio-hydrogen production from ground wheat starch by combined
dark and photo-fermentations. International Journal of Hydrogen Energy 35(4): 1604-1612.
Argun, H. & Kargi, F. 2010b. Photo-fermentative hydrogen gas production
from dark fermentation effluent of ground wheat solution: Effects of light
source and light intensity. International Journal of Hydrogen Energy 35(4): 1595-1603.
Arimi, M.M., Knodel, J., Kiprop, A., Namango, S.S., Zhang, Y. &
Geißen, S.U. 2015. Strategies for improvement of biohydrogen production from
organic-rich wastewater: A review. Biomass and Bioenergy 75: 101-118.
Arisht, S.N., Abdul, P.M., Liu, C.M., Lin, S.K., Maaroff, R.M., Wu, S.Y.
& Jahim, J.M. 2019. Biotoxicity assessment and lignocellulosic structural
changes of phosphoric acid pre-treated young coconut husk hydrolysate for
biohydrogen production. International Journal of Hydrogen Energy 44(12):
5830-5843.
Assawamongkholsiri, T. & Reungsang, A. 2015. Photo-fermentational
hydrogen production of Rhodobacter sp. KKU-PS1 isolated from an UASB reactor. Electronic Journal of
Biotechnology 18(3): 221-230.
Assawamongkholsiri, T., Reungsang, A., Plangkang, P. & Sittijunda, S.
2018. Repeated batch fermentation for photo-hydrogen and lipid production from
wastewater of a sugar manufacturing plant. International Journal of Hydrogen
Energy 43(7): 3605-3617.
Assawamongkholsiri, T., Plangklang, P. & Reungsang, A. 2016.
Photofermentaion and lipid accumulation by Rhodobacter sp. KKU-PS1 using malic acid as a substrate. International Journal of
Hydrogen Energy 41(15): 6259-6270.
Azizi, M.A.H., Wan Isahak, W.N.R., Dzakaria, N. & Yarmo, M.A. 2019.
Hydrogen production from catalytic formic acid ecomposition over Zn based
catalysts under room temperature. Jurnal Kejuruteraan 31(1): 155-160.
Basak, N. & Das, D. 2009. Photofermentative hydrogen production using
purple non-sulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular
photobioreactor: A case study. Biomass and Bioenergy 33(6): 911-919.
Basak, N., Jana, A.K., Das, D. & Saikia, D. 2014. Photofermentative
molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various
modes: The present progress and future perspective. International Journal of
Hydrogen Energy 39(13): 6853-6871.
Camuffo, D. 2019. Radiometric aspects of solar radiation, blackbody, and
lamp radiation. Dlm. Microclimate for Cultural Heritage: Measurement, Risk
Assessment, Conservation, Restoration, and Maintenance of Indoor and Outdoor
Monuments. 3rd ed. hlm. 237-272.
Chen, C.Y., Saratale, G.D., Lee, C.M., Chen, P.C. & Chang, J.S. 2008.
Phototrophic hydrogen production in photobioreactors coupled with
solar-energy-excited optical fibers. International Journal of Hydrogen
Energy 33(23): 6886-6895.
Chen, X., Lv, Y., Liu, Y., Ren, R. & Zhao, J. 2017. The hydrogen
production characteristics of mixed photoheterotrophic culture. International
Journal of Hydrogen Energy 42(8): 4840-4847.
de Souza, D.F., da Silva, P.P.F., Fontenele, L.F.A., Barbosa, G.D. &
de Oliveira Jesus, M. 2019. Efficiency, quality, and environmental impacts: A
comparative study of residential artificial lighting. Energy Reports 5:
409-424.
Eroğlu, İ., Aslan, K., Gündüz, U., Yücel, M. & Türker, L.
1999. Substrate consumption rates for hydrogen production by Rhodobacter
sphaeroidesin a column photobioreactor. Progress in Industrial
Microbiology 35(C): 103-113.
Ghosh, D., Sobro, I.F. & Hallenbeck, P.C. 2012. Optimization of the
hydrogen yield from single-stage photofermentation of glucose by Rhodobacter
capsulatus JP91 using response surface methodology. Bioresource
Technology 123: 199-206.
Hallenbeck, P.C. & Liu, Y. 2016. Recent advances in hydrogen
production by photosynthetic bacteria. International Journal of Hydrogen
Energy 41(7): 4446-4454.
Han, H., Jia, Q., Liu, B., Yang, H. & Shen, J. 2013. Fermentative
hydrogen production from acetate using Rhodobacter sphaeroides RV. International
Journal of Hydrogen Energy 38(25): 10773-10778.
Hanipa, M.A.F., Abdul, P.M., Jahim, J.M., Takriff, M.S., Reungsang, A.
& Wu, S.Y. 2020. Biotechnological approach to generate green biohydrogen
through the utilization of succinate-rich fermentation wastewater. International
Journal of Hydrogen Energy 45(42): 22246-22259.
Hay,
J.X.W., Wu, T.Y., Juan, J.C. & Jahim, J.M. 2013. Biohydrogen production
through photo fermentation or dark fermentation using waste as a substrate:
Overview, economics, and future prospects of hydrogen usage. Biofuels,
Bioproducts and Biorefining 7(3): 334-352.
Hillmer, P. & Gest, H. 1977. H2 metabolism in the
photosynthetic bacterium Rhodopseudomonas
capsulata: H2 production by growing cultures. Journal of
Bacteriology 129(2): 724-731.
Hu, C., Choy, S.Y. & Giannis, A. 2018. Evaluation of lighting systems,
carbon sources, and bacteria cultures on photofermentative hydrogen production. Applied Biochemistry and Biotechnology 185(1): 257-269.
Hu, J., Jing, Y., Zhang, Q., Guo, J. & Lee, D.J. 2017. Mesophilic and
thermophilic photo-hydrogen production from micro-grinded, enzyme-hydrolyzed
maize straws. International Journal of Hydrogen Energy 42(45):
27618-27622.
Jafary, T., Wan Daud, W.R., Ghasemi, M., Abu Bakar, M.H., Sedighi, M.,
Kim, B.H., Carmona-Martínez, A.A., Jahim, J.M. & Ismail, M. 2019. Clean
hydrogen production in a full biological microbial electrolysis cell. International
Journal of Hydrogen Energy 44(58): 30524-30531.
Jalil, N.K.A., Asli, U.A., Khamis, A.K., Hashim, H., Kamaruddin, J.,
Hassim, M.H. & Choopavang, S.B. 2019. Kinetic analysis of biohydrogen
formation using immobilized hydrogen-producing bacteria on activated carbon
sponge from pineapple residues. Jurnal Kejuruteraan SI 2(1): 131-135.
Jiang, D., Fang, Z., Chin, S.X., Tian, X.F. & Su, T.C. 2016.
Biohydrogen production from hydrolysates of selected tropical biomass wastes
with Clostridium butyricum. Scientific Reports 6(May): 1-11.
Jiang, D., Ge, X., Zhang, T., Liu, H. & Zhang, Q. 2016. Photo-fermentative
hydrogen production from enzymatic hydrolysate of corn stalk pith with a
photosynthetic consortium. International Journal of Hydrogen Energy 41(38): 16778-16785.
Kapdan, I.K., Kargi, F., Oztekin, R. & Argun, H. 2009. Bio-hydrogen
production from acid hydrolyzed wheat starch by photo-fermentation using
different Rhodobacter sp. International Journal of Hydrogen Energy 34(5): 2201-2207.
Koku, H., Eroǧlu, I., Gündüz, U., Yücel, M., Türker, L., Eroğlu,
İ., Gündüz, U., Yücel, M., & Türker, L. 2002. Aspects of the
metabolism of hydrogen production by Rhodobacter
sphaeroides. International Journal of Hydrogen Energy 27(11-12):
1315-1329.
Kumar, G., Mudhoo, A., Sivagurunathan, P., Nagarajan, D., Ghimire, A.,
Lay, C.H., Lin, C.Y., Lee, D.J. & Chang, J.S. 2016. Recent insights into
the cell immobilization technology applied for dark fermentative hydrogen
production. Bioresource Technology 219: 725-737.
Laocharoen, S. & Reungsang, A. 2014. Isolation, characterization and
optimization of photo-hydrogen production conditions by newly isolated Rhodobacter sphaeroides KKU-PS5. International
Journal of Hydrogen Energy 39(21): 10870-10882.
Laurinavichene, T., Tekucheva, D., Laurinavichius, K. & Tsygankov, A.
2018. Utilization of distillery wastewater for hydrogen production in one-stage
and two-stage processes involving photofermentation. Enzyme and Microbial
Technology 110: 1-7.
Li, X., Wang, Y., Zhang, S., Chu, J., Zhang, M., Huang, M. & Zhuang,
Y. 2011. Effects of light/dark cycle, mixing pattern and partial pressure of H2 on biohydrogen production by Rhodobacter
sphaeroides ZX-5. Bioresource Technology 102(2): 1142-1148.
Liu, B., Jin, Y.R., Cui, Q.F., Xie, G.J., Wu, Y.N. & Ren, N.Q. 2015.
Photo-fermentation hydrogen production by Rhodopseudomonas sp. nov. strain A7 isolated from the sludge in a bioreactor. International
Journal of Hydrogen Energy 40(28): 8661-8668.
Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M.,
Rybarczyk, P., Przyjazny, A. & Kamiński, M. 2018. Hydrogen production
from biomass using dark fermentation. Renewable and Sustainable Energy
Reviews 91: 665-694.
Maaroff, R.M., Jahim, J.M., Azahar, A.M., Abdul, P.M., Masdar, M.S.,
Nordin, D. & Abd Nasir, M.A. 2019. Biohydrogen production from palm oil
mill effluent (POME) by two stage anaerobic sequencing batch reactor (ASBR)
system for better utilization of carbon sources in POME. International
Journal of Hydrogen Energy 44(6): 3395-3406.
Magnin, J.P. & Deseure, J. 2019. Hydrogen generation in a pressurized
photobioreactor: Unexpected enhancement of biohydrogen production by the
phototrophic bacterium Rhodobacter capsulatus. Applied Energy 239(October 2018): 635-643.
Mahmod, S.S., Jahim, J.M. & Abdul, P.M. 2017. Pretreatment conditions
of palm oil mill effluent (POME) for thermophilic biohydrogen production by
mixed culture. International Journal of Hydrogen Energy 42(45):
27512-27522.
Mishra, P., Singh, L., Ab Wahid, Z., Krishnan, S., Rana, S., Amirul Islam,
M. & Sakinah, M. 2018. Photohydrogen production from dark-fermented palm
oil mill effluent (DPOME) and statistical optimization: Renewable substrate for
hydrogen. Journal of Cleaner Production 199: 11-17.
Nath, K. & Das, D. 2009. Effect of light intensity and initial pH
during hydrogen production by an integrated dark and photofermentation process. International Journal of Hydrogen Energy 34(17): 7497-7501.
Pandey, A., Srivastava, S., Rai, P. & Duke, M. 2019. Cheese whey to
biohydrogen and useful organic acids: A non-pathogenic microbial treatment by L.
acidophilus. Scientific Reports 9(1): 1-9.
Pandey, A., Srivastava, N. & Sinha, P. 2012. Optimization of hydrogen
production by Rhodobacter sphaeroides NMBL-01. Biomass and Bioenergy 37: 251-256.
Reungsang, A., Zhong, N., Yang, Y., Sittijunda, S., Xia, A. & Liao, Q.
2018. 7 - Hydrogen from photo fermentation. Green Energy and Technology.
Singapore: Springer. hlm. 221-317.
Sivagurunathan, P., Kumar, G., Bakonyi, P., Kim, S.H., Kobayashi, T., Xu,
K.Q., Lakner, G., Tóth, G., Nemestóthy, N. & Bélafi-Bakó, K. 2016. A
critical review on issues and overcoming strategies for the enhancement of dark
fermentative hydrogen production in continuous systems. International
Journal of Hydrogen Energy 41(6): 3820-3836.
Subudhi, S., Mogal, S.K., Kumar, N.R., Nayak, T., Lal, B., Velankar, H.R.,
Kumar, T.R., Rao, P.V.C., Choudary,
N.V., Shah, G. & Gandham, S. 2016. Photo fermentative hydrogen production
by a new strain; Rhodobacter sphaeroides CNT 2A, isolated from pond sediment. International Journal of Hydrogen
Energy 41(32): 13979-13985.
Sun, M., Lv, Y. & Liu, Y. 2015. A new hydrogen-producing strain and
its characterization of hydrogen production. Applied Biochemistry and
Biotechnology 177(8): 1676-1689.
Tao, Y., He, Y., Wu, Y., Liu, F., Li, X., Zong, W. & Zhou, Z. 2008.
Characteristics of a new photosynthetic bacterial strain for hydrogen
production and its application in wastewater treatment. International
Journal of Hydrogen Energy 33(3): 963-973.
Tarabas, О.V., Hnatush, S.О. & Мoroz,
О.М. 2019. The usage of nitrogen compounds by purple non-sulfur
bacteria of the Rhodopseudomonas genus. Regulatory Mechanisms in Biosystems 10(1): 83-86.
Turon, V., Anxionnaz-Minvielle, Z. & Willison, J.C. 2018. Replacing
incandescent lamps with an LED panel for hydrogen production by
photofermentation: Visible and NIR wavelength requirements. International
Journal of Hydrogen Energy 43(16): 7784-7794.
Uyar, B., Kars, G., Yücel, M., Gündüz, U. & Eroǧlu, I. 2012.
Hydrogen production via photofermentation. Dlm. State of the Art and
Progress in Production of Biohydrogen. Bentham Science. hlm. 54-77.
Uyar, B., Eroglu, I., Yücel, M., Gündüz, U. & Türker, L. 2007. Effect
of light intensity, wavelength and illumination protocol on hydrogen production
in photobioreactors. International Journal of Hydrogen Energy 32(18):
4670-4677.
Wang, Y., Tahir, N., Cao, W., Zhang, Q. & Lee, D.J. 2019. Grid
columnar flat panel photobioreactor with immobilized photosynthetic bacteria
for continuous photofermentative hydrogen production. Bioresource Technology 291: 121806.
Zhang, Q. & Zhang, Z. 2018. Chapter Four - Biological hydrogen
production from renewable resources by photofermentation. Dlm. Advances in
Bioenergy, 1st ed., Elsevier Inc. 3: 137-160.
Zhou, Q., Zhang, P. & Zhang, G. 2015. Biomass and pigments production
in photosynthetic bacteria wastewater treatment: Effects of light sources. Bioresource
Technology 179: 505-509.
Zhu, Z., Shi, J., Zhou, Z., Hu, F. & Bao, J. 2010. Photo-fermentation
of Rhodobacter sphaeroides for hydrogen production using
lignocellulose-derived organic acids. Process Biochemistry 45(12):
1894-1898.
*Pengarang untuk
surat-menyurat; email: peer@ukm.edu.my