Sains Malaysiana 51(11)(2022): 3677-3688
http://doi.org/10.17576/jsm-2022-5111-13
Effect of
Sterilization on the Degree of Esterification, FTIR Analysis, and Antibacterial
Activity of Durian-Rind Pectin
(Kesan Pensterilan terhadap Tahap Pengesteran, Analisis FTIR dan Aktiviti Antibakteria Pektin Kulit Durian)
INAS
SUCI RAHMAWATI1, HARSI DEWANTARI KUSUMANINGRUM2 &
NANCY DEWI YULIANA2
1Graduate
School Program of Food Science, IPB University, Bogor, Indonesia
2Department
of Food Science and Technology, Faculty of Agricultural Engineering and
Technology, IPB University, Bogor, Indonesia
Diserahkan: 8 Disember 2021/Diterima: 8 Julai 2022
Abstract
Pectin
is a common food ingredient used as a rheology modifier and recently recognized
as an emerging bioactive compound. Degree of esterification (DE) and molecular
weight (MW) are important determinants of its bioactivity. This study evaluated
the effect of moist heat sterilization (121 °C, 15 min) on pectin from
Indonesian durian rind as an alternative method to modify pectin. Sterilized
pectin was compared in terms of DE, Fourier transform infrared (FTIR) analysis,
gel-forming ability, and antibacterial activity to non-sterilized pectin and
standard citrus-peel pectin. Durian-rind pectin was identified as a low-methoxyl pectin with DE of 26.50% and weak antibacterial
activity. After sterilization, the DE and pH decreased. It lost the ability to form a gel which
indicated pectin was degraded to lower molecules. Loss of bands at 1760-1745 cm-1 indicated that pectin underwent ester hydrolysis and generated free carboxyl
groups. On the other hand, the sterilized durian-rind pectin showed strong
antibacterial activity towards Staphylococcus
aureus and Escherichia coli, with
a reduction of 5 log cycles and 3 log cycles, respectively (with the initial
bacterial level of 5 log cfu/mL). These results indicated that depolymerization and deesterification of pectin by heat sterilization was able to improve the antibacterial activity
of durian-rind pectin.
Keywords: Antibacterial activity; durian rind; FTIR
analysis; pectin; sterilization
Abstrak
Pektin ialah bahan makanan biasa yang digunakan sebagai pengubah reologi dan baru-baru ini diiktiraf sebagai sebatian bioaktif yang baru. Tahap pengesteran (DE) dan berat molekul (MW) adalah penentu penting bioaktivitinya. Kajian ini menilai kesan pensterilan haba lembap (121 °C, 15 min) ke atas pektin daripada kulit durian Indonesia sebagai kaedah alternatif untuk mengubah suai pektin. Pektin tersteril dibandingkan daripada segi DE, analisis transformasi Fourier inframerah (FTIR), keupayaan membentuk gel dan aktiviti antibakteria kepada pektin tidak disterilkan dan pektin kulit sitrus piawai. Pektin kulit durian dikenal pasti sebagai pektin metoksil rendah dengan DE sebanyak 26.50% dan aktiviti antibakteria yang lemah. Selepas pensterilan, DE dan pH menurun. Ia kehilangan keupayaan untuk membentuk gel yang menunjukkan pektin telah terdegradasi kepada molekul yang lebih rendah. Kehilangan jalur pada 1760-1745 cm-1 menunjukkan bahawa pektin mengalami hidrolisis ester dan menghasilkan kumpulan karboksil bebas. Sebaliknya, pektin kulit durian yang disterilkan menunjukkan aktiviti antibakteria yang kuat terhadap Staphylococcus aureus dan Escherichia coli masing-masing dengan pengurangan 5 kitaran log dan 3 kitaran log (dengan tahap bakteria awal 5 log cfu/mL). Keputusan ini menunjukkan bahawa penyahpolimeran dan penyahsterilan pektin melalui pensterilan haba dapat meningkatkan aktiviti antibakteria pektin kulit durian.
Kata kunci: Aktiviti antibakteria; analisis FTIR; kulit durian; pektin; pensterilan
RUJUKAN
AOAC 2012. Official Methods of Analysis. 19th ed.
Gaithersburg: AOAC International.
Ashayerizadeh,
O., Dastar, B. & Pourashouri, P. 2020. Study of antioxidant and
antibacterial activities of depolymerized fucoidans extracted from Sargassum
tenerrimum. International Journal of Biological Macromolecules 151(May): 1259-1266. https://doi.org/10.1016/j.ijbiomac.2019.10.172
Bichara,
L.C., Alvarez, P.E., Bimbi, M.V.F., Vaca, H., Gervasi, C. & Brandán, S.A.
2016. Structural and spectroscopic study of a pectin isolated from citrus peel
by using FTIR and FT-Raman spectra and DFT calculations. Infrared Physics
& Technology 76(May): 315-327. https://doi.org/10.1016/j.infrared.2016.03.009
Chen,
J., Liu, W., Liu, C-M., Li, T., Liang, R-H. & Luo, S-J. 2015. Pectin
modifications: A review. Critical Reviews in Food Science and Nutrition 55(12): 1684-1698. https://doi.org/10.1080/10408398.2012.718722
Cheok,
C.Y., Noranizan Mohd Adzahan, Russly Abdul Rahman, Nur Hanani Zainal Abedin,
Norhayati Hussain, Rabiha Sulaiman & Chong, G.H. 2018. Current trends of
tropical fruit waste utilization. Critical Reviews in Food Science and
Nutrition 58(3): 335-361. https://doi.org/10.1080/10408398.2016.1176009
Diaz,
J.V., Anthon, G.E. & Barrett, D.M. 2007. Nonenzymatic degradation of citrus
pectin and pectate during prolonged heating: Effects of pH, temperature, and
degree of methyl esterification. Journal of Agricultural and Food Chemistry 55(13): 5131-5136. https://doi.org/10.1021/jf0701483
Feng,
J., Yi, X., Huang, W., Wang, Y. & He, X. 2018. Novel triterpenoids and
glycosides from durian exert pronounced anti-inflammatory activities. Food
Chemistry 241: 215-221. https://doi.org/10.1016/j.foodchem.2017.08.097
Feng,
J., Wang, Y., Yi, X., Yang, W. & He, X. 2016. Phenolics from durian exert
pronounced NO inhibitory and antioxidant activities. Journal of Agricultural
and Food Chemistry 64(21): 4273-4279.
https://doi.org/10.1021/acs.jafc.6b01580
Fraeye,
I., De Roeck, A., Duvetter, T., Verlent, I., Hendrickx, M. & Van Loey, A.
2007. Influence of pectin properties and processing conditions on thermal
pectin degradation. Food Chemistry 105(2): 555-563. https://doi.org/10.1016/j.foodchem.2007.04.009
Gnanasambandam,
R. & Proctor, A. 2000. Determination of pectin degree of esterification by
diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry 68(3): 327-332. https://doi.org/10.1016/S0308-8146(99)00191-0
Harjanti,
D.W., Wahyono, F. & Ciptaningtyas, V.R. 2020. Effects of different
sterilization methods of herbal formula on phytochemical compounds and
antibacterial activity against mastitis-causing bacteria. Veterinary World 13(6): 1187-1192. https://doi.org/10.14202/vetworld.2020.1187-1192
Hokputsa,
S., Gerddit, W., Pongsamart, S., Inngjerdingen, K., Heinze, T., Koschella, A.,
Harding, S.E. & Paulsen, B.S. 2004. Water-soluble polysaccharides with
pharmaceutical importance from durian rinds (Durio zibethinus Murr.):
Isolation, fractionation, characterisation and bioactivity. Carbohydrate
Polymers 56(4): 471-481. https://doi.org/10.1016/j.carbpol.2004.03.018
Hu,
X., Jiang, X., Gong, J., Hwang, H., Liu, Y. & Guan, H. 2005. Antibacterial
activity of lyase-depolymerized products of alginate. Journal of Applied
Phycology 17(1): 57-60. https://doi.org/10.1007/s10811-005-5524-5
Köllnberger,
A., Schrader, R. & Briehn, C.A. 2020. Carboxylic acid mediated
antimicrobial activity of silicone elastomers. Materials Science and
Engineering C 113(April): 111001.
https://doi.org/10.1016/j.msec.2020.111001
Li,
P.J., Xia, J.L., Nie, Z.Y. & Shan, Y. 2016. Pectic oligosaccharides
hydrolyzed from orange peel by fungal multi-enzyme complexes and their
prebiotic and antibacterial potentials. LWT - Food Science and Technology 69(June): 203-210. https://doi.org/10.1016/j.lwt.2016.01.042
Lipipun,
V., Nantawanit, N. & Pongsamart, S. 2002. Antimicrobial activity (in
vitro) of polysaccharide gel from durian fruit-hulls. Songklanakarin J.
Sci. Technol. 24 (1): 31-38.
http://www.thaiscience.info/journals/Article/Antimicrobial activity (in vitro)
of polysaccharide gel from durian fruit-hulls.pdf
Liu,
M., Liu, Y., Cao, M-J., Liu, G-M., Chen, Q., Sun, L. & Chen, H. 2017.
Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria
japonica. Carbohydrate Polymers 172: 294-305.
https://doi.org/10.1016/j.carbpol.2017.05.060
Minzanova,
S., Mironov, V., Arkhipova, D., Khabibullina, A., Mironova, L., Zakirova, Y. &
Milyukov, V. 2018. Biological activity and pharmacological application of
pectic polysaccharides: A review. Polymers 10(12): 1407.
https://doi.org/10.3390/polym10121407
Müller-Maatsch,
J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M.,
Petrusan, J., Van Droogenbroeck, B., Elst, K. & Sforza, S. 2016. Pectin
content and composition from different food waste streams. Food Chemistry 201(June): 37-45. https://doi.org/10.1016/j.foodchem.2016.01.012
Munarin,
F., Bozzini, S., Visai, L., Tanzi, M.C. & Petrini, P. 2013. Sterilization
treatments on polysaccharides: Effects and side effects on pectin. Food
Hydrocolloids 31(1): 74-84. https://doi.org/10.1016/j.foodhyd.2012.09.017
Muñoz-Almagro,
N., Montilla, A., Moreno, F.J. & Villamiel, M. 2017. Modification of citrus
and apple pectin by power ultrasound: Effects of acid and enzymatic treatment. Ultrasonics
Sonochemistry 38: 807-819. https://doi.org/10.1016/j.ultsonch.2016.11.039
Pholdaeng,
K. & Pongsamart, S. 2010. Studies on the immunomodulatory effect of
polysaccharide gel extracted from Durio zibethinus in Penaeus monodon shrimp against Vibrio harveyi and WSSV. Fish and Shellfish Immunology 28(4): 555-561. https://doi.org/10.1016/j.fsi.2009.12.009
Pongsamart,
S., Nanatawanit, N., Lertchaipon, J. & Lipipun, V. 2005. Novel water
soluble antibacterial dressing of durian polysaccharide gel. Acta
Horticulturae 678: 65-73. https://doi.org/10.17660/ActaHortic.2005.678.8
Saravana,
P.S., Cho, Y-N., Patil, M.P., Cho, Y.J., Kim, G.D., Park, Y.B., Woo, H-C. &
Chun, B-S. 2018. Hydrothermal degradation of seaweed polysaccharide:
Characterization and biological activities. Food Chemistry 268: 179-187.
https://doi.org/10.1016/j.foodchem.2018.06.077
Schieber,
A., Hilt, P., Streker, P., Endreß, H-U., Rentschler, C. & Carle, R. 2003. A
new process for the combined recovery of pectin and phenolic compounds from
apple pomace. Innovative Food Science & Emerging Technologies 4(1):
99-107. https://doi.org/10.1016/S1466-8564(02)00087-5
Shpigelman,
A., Kyomugasho, C., Christiaens, S., Van Loey, A.M. & Hendrickx, M.E. 2014.
Thermal and high pressure high temperature processes result in distinctly different
pectin non-enzymatic conversions. Food Hydrocolloids 39: 251-263.
https://doi.org/10.1016/j.foodhyd.2014.01.018
Smyth,
T., Ramachandran, V.N. & Smyth, W.F. 2009. A study of the antimicrobial
activity of selected naturally occurring and synthetic coumarins. International
Journal of Antimicrobial Agents 33(5): 421-426.
https://doi.org/10.1016/j.ijantimicag.2008.10.022
Spangler,
D., Rothenburger, S., Nguyen, K., Jampani, H., Weiss, S. & Bhende, S. 2003. In vitro antimicrobial activity of oxidized regenerated cellulose
against antibiotic-resistant microorganisms. Surgical Infections 4(3):
255-262. https://doi.org/10.1089/109629603322419599
Stalheim,
T., Ballance, S., Christensen, B.E. & Granum, P.E. 2009. Sphagnan - a
pectin-like polymer isolated from Sphagnum moss can inhibit the growth
of some typical food spoilage and food poisoning bacteria by lowering the pH. Journal
of Applied Microbiology 106(3): 967-976.
https://doi.org/10.1111/j.1365-2672.2008.04057.x
Szymanska-Chargot,
M. & Zdunek, A. 2013. Use of FT-IR spectra and pca to the bulk
characterization of cell wall residues of fruits and vegetables along a
fraction process. Food Biophysics 8(1): 29-42.
https://doi.org/10.1007/s11483-012-9279-7
Takamine,
K., Abe, J-I., Shimono, K., Sameshima, Y., Morimura, S. & Kida, K. 2007.
Physicochemical and gelling characterizations of pectin extracted from sweet
potato pulp. Journal of Applied Glycoscience 54(4): 211-216.
https://doi.org/10.5458/jag.54.211
Thunyakipisal,
P., Saladyanant, T., Hongprasong, N., Pongsamart, S. & Apinhasmit, W. 2010.
Antibacterial activity of polysaccharide gel extract from fruit rinds of Durio
zibethinus Murr. against oral pathogenic bacteria. Journal of
Investigative and Clinical Dentistry 1(2): 120-125.
https://doi.org/10.1111/j.2041-1626.2010.00017.x
Tonari,
K., Mitsui, K. & Yonemoto, K. 2002. Structure and antibacterial activity of
cinnamic acid related compounds. Journal of Oleo Science 51(4): 271-273.
https://doi.org/10.5650/jos.51.271
Vodnar,
D.C., Călinoiu, L.F., Dulf, F.V., Ştefănescu, B.E., Crişan,
G. & Socaciu, C. 2017. Identification of the bioactive compounds and
antioxidant, antimutagenic and antimicrobial activities of thermally processed
agro-industrial waste. Food Chemistry 231: 131-140.
https://doi.org/10.1016/j.foodchem.2017.03.131
Voragen,
A.G.J., Coenen, G.J., Verhoef, R.P. & Schols, H.A. 2009. Pectin, a
versatile polysaccharide present in plant cell walls. Structural Chemistry 20(2): 263-275. https://doi.org/10.1007/s11224-009-9442-z
Wai,
W.W., Alkarkhi, A.F.M. & Mat Easa, A. 2010. Effect of extraction conditions
on yield and degree of esterification of durian rind pectin: An experimental
design. Food and Bioproducts Processing 88(2-3): 209-214.
https://doi.org/10.1016/j.fbp.2010.01.010
Wang,
X., Chen, Q. & Lü, X. 2014. Pectin extracted from apple pomace and citrus
peel by subcritical water. Food Hydrocolloids 38: 129-137.
https://doi.org/10.1016/j.foodhyd.2013.12.003
Wanlapa,
S., Wachirasiri, K., Sithisam-Ang, D. & Suwannatup, T. 2015. Potential of
Selected tropical fruit peels as dietary fiber in functional foods. International
Journal of Food Properties 18(6): 1306-1316.
https://doi.org/10.1080/10942912.2010.535187
Wikiera,
A., Grabacka, M., Byczyński, Ł., Stodolak, B. & Mika, M. 2021.
Enzymatically extracted apple pectin possesses antioxidant and antitumor
activity. Molecules 26(5). https://doi.org/10.3390/molecules26051434
Wu,
M-C., Li, H-C., Wu, P-H., Huang, P-H. & Wang, Y-T. 2014. Assessment of
oligogalacturonide from citrus pectin as a potential antibacterial agent
against foodborne pathogens. Journal of Food Science 79(8): M1541-M1544.
https://doi.org/10.1111/1750-3841.12526
Zhu,
M., Ge, L., Lyu, Y., Zi, Y., Li, X., Li, D. & Mu, C. 2017. Preparation,
characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydrate
Polymers 174: 1051-1058. https://doi.org/10.1016/j.carbpol.2017.07.029
Zi,
Y., Zhu, M., Li, X., Xu, Y., Wei, H., Li, D. & Mu, C. 2018. Effects of
carboxyl and aldehyde groups on the antibacterial activity of oxidized amylose. Carbohydrate Polymers 192: 118-125.
https://doi.org/10.1016/j.carbpol.2018.03.060
*Pengarang untuk surat-menyurat; email: h_kusumaningrum@apps.ipb.ac.id