Sains Malaysiana 52(1)(2023): 165-174
http://doi.org/10.17576/jsm-2023-5201-13
FTIR-Based Metabolomics for Characterization
of Antioxidant Activity of Different Parts of Sesbania grandiflora Plant
(Metabolomik Berasaskan FTIR untuk Pencirian Aktiviti
Antioksidan Bahagian Berbeza Tumbuhan Sesbania
grandiflora)
NOVIANY NOVIANY1,*, M. HANIF
AMRULLOH1, MOHAMAD
RAFI2, BAMBANG IRAWAN3, WISNU ANANTA KUSUMA4, SUTOPO HADI1, R. SUPRIYANTO1, RISA NOFIANI5,
M. HAZWAN HUSSIN6 & SURIPTO DWI YUWONO1
1Department of Chemistry, Faculty of Mathematics and
Natural Sciences, University of Lampung, Bandar Lampung, 35145, Lampung,
Indonesia
2Department of Chemistry,
Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, West
Java, Indonesia
3Department of Biology, Faculty of Mathematics and
Natural Sciences, University of Lampung, Bandar Lampung, 35145, Lampung,
Indonesia
4Department of Computer
Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor,
16680, West Java, Indonesia
5Department of Chemistry,
University of Tanjungpura, Pontianak, 78124 Indonesia
6School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
Diserahkan:
12 Disember 2021/Diterima:
29 September 2022
Abstract
Sesbania grandiflora, one of the flowering plants with great potential
as a source of natural antioxidants because it contains chemicals such as tannin,
phenolics, and flavonoids. However, there has been no extensive investigation on
the antioxidant activity of isolated from different parts of this plant. This study aims to investigate
the correlation between antioxidant activity and secondary metabolites extracted from three different
parts (leaves, stem barks, and roots) of S. grandiflora plant using Fourier-transform
infrared spectroscopy (FTIR) based metabolomics approach. The FTIR
is a very useful technique for identifying the functional groups present in the
mixtures, while antioxidant assay provides the base to select the part of the
plant as the most potential source of antioxidant. The antioxidant properties
were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid
(ABTS), and potassium ferricyanide reduction method. The multivariate data - analyses using Principal
Component Analysis (PCA) and Partial
Least Square (PLS) were conducted to compare the distribution of metabolites
extracted from different parts of the S.
grandiflora plant investigated. The PLS was performed to evaluate the
relationship between the components of the extracts obtained from different
parts of the plant and their antioxidant activities. The results exhibited that
antioxidant activities of the extract of the stem barks, and roots are higher
than that of the extract of the leaves. Also, the PLS model indicated
that the functional group absorption
data were significantly correlated with the IC50 values of antioxidant activity. Subsequently, based on the results of
PLS analysis displayed that C=C, C=O, and along with C-O functional
groups are proposed as the main contributors to the antioxidant activity
of the extracts tested. The extracts of different parts were grouped using
PCA analysis with a total of principal components (PC) of 94%.
Keywords: Antioxidant property; metabolomics approach; secondary metabolites; Sesbania grandiflora
Abstrak
Sesbania
grandiflora, salah satu tumbuhan berbunga yang
berpotensi besar sebagai sumber antioksidan semula jadi kerana mengandungi
bahan kimia seperti tanin, fenol dan flavonoid. Walau
bagaimanapun, tiada kajian meluas mengenai aktiviti antioksidan terpencil
daripada bahagian berlainan tumbuhan ini. Penyelidikan ini bertujuan untuk mengkaji korelasi antara
aktiviti antioksidan dan metabolit sekunder yang diekstrak daripada tiga
bahagian berbeza (daun, kulit batang dan akar) tumbuhan S. grandiflora menggunakan pendekatan metabolomik berasaskan
spektroskopi transformasi Fourier inframerah (FTIR). FTIR ialah
teknik yang sangat berguna untuk mengenal pasti kumpulan berfungsi yang
terdapat dalam campuran, manakala ujian antioksidan menyediakan asas untuk
memilih bahagian tumbuhan sebagai sumber antioksidan yang paling berpotensi. Sifat
antioksidan telah ditentukan menggunakan 2,2-difenil-1-picrilhidrazil (DPPH),
asid 2,2'-azino-bis-3-etilbenztiazolina-6-sulfonik (ABTS) dan kaedah
pengurangan kalium feriksianida. Data multivariat - Analisis menggunakan Analisis Komponen
Utama (PCA) dan Kuasa Dua Terkecil Separa (PLS) telah dijalankan untuk
membandingkan taburan metabolit yang diekstrak daripada bahagian berlainan
tumbuhan S. grandiflora yang dikaji. PLS dijalankan
untuk menilai hubungan antara komponen ekstrak yang diperoleh daripada bahagian
tumbuhan yang berlainan dan aktiviti antioksidannya. Keputusan menunjukkan
bahawa aktiviti antioksidan ekstrak kulit batang dan akar adalah lebih tinggi
daripada ekstrak daun. Juga, model PLS menunjukkan bahawa data penyerapan kumpulan
berfungsi secara signifikan berkorelasi dengan nilai IC50 aktiviti
antioksidan. Selepas itu, berdasarkan keputusan analisis PLS
menunjukkan bahawa C=C, C=O dan bersama-sama dengan kumpulan berfungsi C-O
dicadangkan sebagai penyumbang utama kepada aktiviti antioksidan ekstrak yang
diuji. Ekstrak
bahagian yang berbeza dikumpulkan menggunakan analisis PCA dengan jumlah
komponen utama (PC) sebanyak 94%.
Kata kunci: Metabolit sekunder; pendekatan metabolomik; Sesbania
grandiflora; sifat antioksidan
RUJUKAN
Adámez, J.D., Samino, E.G., Sánchez, E.V. & González-Gómez, D. 2012. In vitro estimation of the
antibacterial activity and antioxidant capacity of aqueous extracts from
grape-seeds (Vitis vinifera L.). Food Control 24(1-2): 136-141.
Bittencourt, M.L.F., Ribeiro, P.R., Franco,
R.L.P., Hilhorst, H.W.M., de Castro R.D. &
Fernandez, L.G. 2015. Metabolite profiling, antioxidant and antibacterial
activities of Brazilian propolis: Use of correlation and multivariate analyses
to identify potential bioactive compounds. Food Research International 76: 449-457.
Blois, M.S. 1958.
Antioxidant determinations by the use of a stable free radical. Nature 181:
1199-1200.
Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M.& Morelli, I. 2001. Antioxidant principles from Bauhinia tarapotensis. Journal of Natural Products 64: 892-895.
Cambiaghi, A., Ferrario, M. & Masseroli, M.
2017. Analysis of metabolomic data: Tools, current strategies and future
challenges for omics data integration. Briefings
in Bioinformatics 18: 498-510.
Coulibaly, A.Y., Hashim, R., Sulaiman, S.F., Sulaiman, O.,
Ang, L.Z.P. & Ooi, K.L. 2014. Bioprospecting
medicinal plants for antioxidant components. Asian Pacific Journal of Tropical Medicine 7(Suppl 1): S553-S559.
Easmin, S., Sarker,
M.Z.I., Ghafoor, K., Ferdosh, S., Jaffri, J., Ali, M.E., Mirhosseini,
Al-Juhaimi, F.Y., Perumal, V. & Khatib, A. 2017. Rapid investigation of
α-glucosidase inhibitory activity of Phaleria
macrocarpa extracts using FTIR-ATR based fingerprinting. Journal of Food and Drug Analysis 25:
306-315.
Greenwell, M. & Rahman,
P.K.S.M. 2015. Medicinal plants: Their use in anticancer treatment. International Journal of Pharmaceutical
Sciences and Research 6: 4103-4112.
Gülçin, I. 2020. Antioxidants and
antioxidant methods: An updated overview. Archives
of Toxicology 94: 651-715.
Guo,
S.C., Yu, S., Qian, Y., Hu, M.H., Shan, M.Q., Chen, P.D. & Li, S.F.Y. 2017.
Correlation of antioxidant activity and volatile oil chemical components from Schizonepeta tenuifolia herbs by
chemometric methods. International
Journal of Food Properties 20: S1082-S1092.
Hasan, N., Osman, H., Mohamad, S.,
Keng Chong, W., Awang, K. & Zahariluddin, A.S.M. 2012. The chemical
components of Sesbania grandiflora roots and their antituberculosis activity. Pharmaceuticals 5: 882-889.
He, S. & Yan, X. 2013. From resveratrol
to its derivatives: New sources of natural antioxidant. Current Medicinal Chemistry 20(8): 1005-1017.
Huang, W-J., Zhang, X. & Chen,
W.W. 2016. Role of oxidative stress in Alzheimer's disease (Review). Biomedical Reports 4: 519-522.
Jayaprakasha, G.K., Singh, R.P. & Sakariah, K.K. 2001.
Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry 73: 285-290.
Lister, I.N.E., Ginting, C.N.,
Girsang, E., Armansyah, A., Marpaung, H.H., Sinaga, A.P.F., Handayani, R.A.S.
& Rizal, R. 2020. Antioxidant properties of Red Betel (Piper crocatum) leaf extract and its compounds. Journal of Natural Remedies 19: 198-205.
Manna, P. & Jain, S.K. 2015.
Obesity, oxidative stress, adipose tissue dysfunction, and the associated
health risks: Causes and therapeutic strategies. Metabolic Syndrome and Related Disorders 13: 423-444.
Nani, A., Murtaza,
B., Sayed Khan, A., Khan, N.A. & Hichami, A. 2021. Antioxidant and
anti-inflammatory potential of polyphenols contained in mediterranean diet in
obesity: Molecular mechanisms. Molecules 26: 985.
Noviany,
N., Samadi, A., Carpenter, E.L., Abugrain, M.E., Hadi, S., Purwitasari, N., Indra, G., Indra, A. & Mahmud, T. 2021. Structural revision of
sesbagrandiflorains a and b, and synthesis and biological evaluation of 6-methoxy-2-arylbenzofuran derivatives. Journal of
Natural Medicines 75: 66-75.
Noviany, Osman, H., Mohamad, S. & Hadi, S. 2020a. Antibacterial
activity of extracts and compounds from the roots of Sesbania grandiflora (Leguminosae). Research
Journal of Chemistry and Environment 24(8): 108-113.
Noviany,
N., Samadi, A., Yuliyan, N., Hadi, S., Aziz, M., Purwitasari, N., Mohamad, S., Ismail, N.N., Gable, K.P. & Mahmud, T. 2020b.
Structure characterization and biological activity of 2-arylbenzofurans from an
Indonesian plant, Sesbania grandiflora (L.) Pers. Phytochemistry Letters 35: 211-215.
Noviany, N., Nurhidayat, A., Hadi,
S., Suhartati, T., Aziz, M., Purwitasari, N. & Subasman, I. 2018.
Sesbagrandiflorain a and b: Isolation of two new 2-arylbenzofurans from the
stem bark of Sesbania grandiflora. Natural Product Research 32: 2558-2564.
Noviany, Osman, H., Chong, W.K.,
Awang, K. & Manshoor, N. 2012. Isolation and characterisation of
l,l’-binaphthalene-2,2’-diol, a new biaryl natural product from Sesbania
grandiflora root. Journal of
Basic and Applied Sciences8: 253-256.
Nurmaida, Darusman, L.K., Rafi, M. &
Heryanto, R. 2018. Metabolite profiling
of Tabat Barito (Ficus deltoidea) using UPLC-QTOF-MS/MS. The Journal
of Pure and Applied Chemistry Research 7(2): 100-108.
Pavia, D.L.,
Lampman, G.M. & Kriz, D.Z. 2010. Introduction
to Spectroscopy. Brooks/Cole. Thomson Learning, Inc.
Petlevski, R., Flajs, D., KaloCera,
Z. & Končić, M.Z. 2013. Composition and antioxidant activity of
aqueous and ethanolic Pelargonium radula extracts. South African Journal of Botany 85: 17-22.
Re, R., Pellegrini, N.,
Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. 1999. Antioxidant
activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26:
1231-1237.
Rodríguez-García,
C.M., Ruiz-Ruiz, J.C., Peraza-Echeverría, L., Peraza-Sánchez, S.R.,
Torres-Tapia, L.W., Pérez-Brito, D., Tapia-Tussell, R., Herrera-Chalé, F.G.,
Segura-Campos, M.R., Quijano-Ramayo, A., Ramón-Sierra, J.M. &
Ortiz-Vázquez, E. 2019. Antioxidant, antihypertensive, anti-hyperglycemic, and
antimicrobial activity of aqueous extracts from twelve native plants of the
Yucatan coast. PLoS ONE 14(3):
e0213493.
Rohaeti,
E., Karunina, F. & Rafi, M. 2021. FTIR-based fingerprinting and chemometrics
for rapid investigation of antioxidant activity from Syzygium polyanthum extracts. Indonesian
Journal of Chemistry 21: 128-136.
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T.& Sochor, J. 2015. Bioactive compounds and antioxidant activity in different types of Berries. International Journal of Molecular Sciences 16: 24673-24706.
Umar,
A.H., Ratnadewi, D., Rafi, M. & Sulistyaningsih, Y.C. 2021. Untargeted
metabolomics analysis using FTIR and UHPLC-Q-Orbitrap HRMS of two curculigo
species and evaluation of their antioxidant and α-glucosidase inhibitory
activities. Metabolites 11: 42.
*Pengarang untuk
surat-menyurat; email: noviany@fmipa.unila.ac.id
|