Sains Malaysiana
52(1)(2023): 57-69
http://doi.org/10.17576/jsm-2023-5201-05
Drought Stress Induced the Flavonoid Content in Moringa (Moringa
oleifera Lam.) Leaves
(Stres Kemarau Mengaruh Kandungan Flavonoid pada Daun Moringa (Moringa
oleifera Lam.))
RIDWAN1,2, HAMIM1,*,
SUHARSONO1& NURIL HIDAYATI2
1Department
of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor,
Indonesia
2National Research and Innovation Agency, Indonesia
Diserahkan: 26 April 2022/Diterima: 27 Oktober 2022
Abstract
Flavonoid is one of the most widely
available bioactive compounds presence in the Moringa (Moringa oleifera Lam.) leaves. Osmotic stress is known to induce flavonoid production, however,
the water level varies among plant species. This study aimed to examined the
effects of water stress levels on the flavonoid content of Moringa leaves. The
plants were treated withholding watering at three intervals (I): i.e.,: 1 (as control), 3 and 7 days based on the evaporated
water during the treatments. The drought treatments were given within 4
different periods (D) before the plants were harvested, i.e.,: 8, 16, 24 and 32 days, and measured for the growth and biomass, proline (Pro)
and chlorophyll (Chl) content, leaf water potential (WP), leaf relative water
content (RWC), quercetin (Q) and kaempferol (K) content, and water use
efficiency of flavonoid (WUEf). The results showed that the drought
treatments induced different water statuses in the plants by decreases the leaf
relative water content (RWC) and leaf water potential (WP) and increases of
proline content significantly (up to 3 fold). Growth and biomass production
decreased with the increase of water stress, whereas flavonoid content
increased when the drought was mild and decreased again under severe drought.
The highest content of flavonoids (1314.53 mg/kg leave biomass for Q and
2984.15 mg/kg leave biomass for K) and WUEf were shown when the
plants were treated with 3 days drought for 16 days periods before the plants
were harvested (I2D2) with no significant reduction in leaf biomass. This
result suggests that the treatment of I2D2 is the best for bioactive production
in Moringa.
Keywords: Bioactive compounds; drought; kaempferol; quercetin
Abstrak
Salah satu sebatian bioaktif yang
paling banyak digunakan yang diperoleh daripada daun Moringa (Moringa
oleifera Lam.) ialah flavonoid. Kajian ini bertujuan untuk mendorong
kandungan flavonoid daun Moringa melalui rawatan tekanan air yang tidak
mengurangkan jumlah pengeluaran bioaktif. Rawatan kemarau digunakan dengan
menahan penyiraman dengan selang 1 (sebagai kawalan), 3 dan 7 hari. Rawatan
kemarau diberikan dalam 4 tempoh (kitaran) yang berbeza sebelum tanaman dituai,
iaitu: 8, 16, 24 dan 32 hari. Isi padu pengairan ditentukan berdasarkan perbezaan
di antara berat pasu di bawah kapasiti ladang dan di bawah rawatan kemarau
sejurus sebelum penyiraman seterusnya. Pemboleh ubah yang diperhatikan ialah
pertumbuhan dan biojisim, prolin (Pro), klorofil (Chl), potensi air daun (WP),
kandungan air relatif daun (RWC), kandungan kuersetin (Q) dan kaempferol (K)
dan kecekapan penggunaan air flavonoid. (WUEf). Hasil kajian
menunjukkan bahawa rawatan kemarau mampu menyebabkan status air yang berbeza
antara rawatan yang ditunjukkan oleh penurunan kandungan air relatif daun (RWC)
dan potensi air daun (WP) akibat kemarau yang lebih lama, manakala ia
menyebabkan peningkatan kandungan prolin dengan ketara. Pertumbuhan dan
pengeluaran biojisim menurun dengan peningkatan tekanan air, manakala kandungan
flavonoid meningkat apabila kemarau sederhana dan berkurangan semula di bawah
kemarau yang teruk. Kandungan flavonoid (Q dan K) dan WUEf tertinggi
ditunjukkan apabila tumbuhan dirawat dengan kemarau 3 hari selama tempoh 16
hari sebelum tanaman dituai (I2D2) tanpa pengurangan ketara dalam biojisim
daun. Keputusan ini menunjukkan bahawa rawatan I2D2 adalah yang terbaik untuk
pengeluaran bioaktif di Moringa.
Kata kunci: Kaempferol;
kuersetin; sebatian bioaktif; tekanan air
RUJUKAN
Abdelkawy, K.S., Balyshev, M.E. & Elbarbry, F. 2016. A new validated HPLC method for the determination of quercetin:
Application to study pharmacokinetics in rats. Biomedical Chromatography 31(3). doi: 10.1002/bmc.3819
Ahmed, U., Rao, M.J., Qi, C., Xie, Q., Noushashi,
H.A., Yaseen, M., Shi, X. & Zheng, B. 2021. Expression profiling of flavonoid
biosynthesis genes and secondary metabolites accumulation in populus under
drought stress. Molecules 26: 5546. https://doi.org/10.3390/molecules26185546
Al-Gabbiesh, A.,
Kleinwächter, M. & Selmar, D. 2015. Influencing the contents of secondary metabolites in spice and
medicinal plants by deliberately applying drought stress during their
cultivation. Jordan Journal of Biological Sciences 8(1): 1-10.
Ali, E., Iqbal, A., Hussain, S., Shah, J.M., Said, F.,
Imtiaz, M., Jalal, F. & Khan, M.A. 2019. Selection criteria to assess drought
stress tolerance in wheat genotypes using physiological and biochemical
parameters. Biosciences Biotechnology Research Asia 16(4): 751-762.
Azhar, N., Hussain, B., Ashraf, M.Y.
& Abbasi, K.Y. 2011. Water stress-mediated changes in growth, physiology
and secondary metabolites of desi ajwain (Trachyspermum ammi L.). Pakistan
Journal of Botany 43: 15-19.
Bates, L.S., Waldren, R.P. & Teare,
L.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207.
Boumenjel, A., Papadopoulos, A.
& Ammari, Y. 2021. Growth response of Moringa oleifera (Lam) to
water stress and to arid bioclimatic conditions. Agroforestry Systems 95: 823-833.
Brunetti, C., Loreto, F., Ferrini,
F., Gori, A., Guidi, L., Remorini, D., Centritto, M., Fini, A. & Tattini,
M. 2018. Metabolic plasticity in the hygrophyte Moringa oleifera exposed
to water stress. Tree Physiology 38(11): 1640-1654.
Edwinanto,
L., Septiadi, E., Nurfazriah, L.R., Anastasya, K.S. & Pranata, P. 2018.
Phytochemical features of Moringa oleifera leaves as anticancer. Journal
of Medicine and Health 2(1): 680-688.
Furlan, A.L., Bianucci, E., Giordano, W., Castro, S. & Becker, D.F. 2020. Proline metabolic dynamics and implications in drought
tolerance of peanut plants. Plant Physiology and Biochemistry 151:
566-578.
Gharibi, S., Tabatabaei, B.E.S., Saeidi, G. & Goli, S.A.H. 2016. Effect of drought stress on total phenolic, lipid
peroxidation, and antioxidant activity of achillea species. Applied
Biochemistry and Biotechnology 178: 796-809.
González-Romero, J., Arranz-Arranz,
S., Verardo, V., García-Villanova, B. & Guerra-Hernández, E.J. 2020.
Bioactive compounds and antioxidant capacity of moringa leaves grown in Spain
versus 28 leaves commonly consumed in pre-packaged salads. Processes 8(10): 1297.
Hasan, M.M., Alharby, H.F., Uddin, N., Ali, M.A., Anwar, Y.,
Fang, X.W., Hakeem, K.R., Alzahrani, Y. & Hajar,
A.S. 2020. Magnetized water confers drought stress tolerance in moringa biotype
via modulation of growth, gas exchange, lipid peroxidation and antioxidant
activity. Polish Journal of Environmental Studies 29(2): 1625-1636.
Hasym, A.M.O.M., Nor, N.M., Adnan, L.H.M., Ahmad,
N.Z.B., Septama, A.W., Najihah, N.N., Lwin, O.M. & Simbak, N.
2021. Effects of apigenin, luteolin, and quercetin on the natural killer
(NK-92) cells proliferation: A potential role as immunomodulator. Sains
Malaysiana 50(3): 821-828.
Hauer, B. 2010. Role of proline in plant response to drought and salinity. Handbook
of Plant and Crop Stress. 3rd edition,
Chapter 9. Boca
Raton: CRC Press.
Hodaei, M., Rahimmalek, M., Arzani, A. & Talebi, M. 2018. The effect of water stress on phytochemical accumulation, bioactive
compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum
morifolium L. Industrial Crops & Products 120: 295-304.
Jabeen, M., Akram, N.A., Ashraf, M. & Aziz, A. 2019. Assessment of biochemical changes in spinach (Spinacea
oleracea L.) subjected to varying water regimes. Sains Malaysiana 48(3): 533-541.
Juan, C.A., de la Lastra, J.M.P., Plou, F.J. & Pérez-Lebeña, E. 2021. The chemistry of reactive oxygen species (ROS)
revisited: Outlining
their role in biological macromolecules (DNA, lipids and proteins) and induced
pathologies. International Journal of Molecular Sciences 22: 4642.
Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A.,
Ramakrishnan, M. & Sharma, A. 2020. The impact of drought in plant
metabolism: How
to exploit tolerance mechanisms to increase crop production. Applied
Sciences 10: 1-19.
Karuppanapandian, T., Moon, J.C., Kim, C., Manoharan,
K. & Kim, W. 2011. Reactive oxygen species in plants: Their
generation, signal transduction, and scavenging mechanisms. Australian
Journal of Crop Science 5(6): 709-752.
Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B.E.,
Salami, S.A. & Babalar, M. 2019. Morphological, physiochemical and
antioxidant responses of Maclura pomifera to drought stress. Scientific
Reports 9: 1920.
Kubra, G., Khan, M., Munir, F., Gul, A., Shah, T.,
Hussain, A., Caparrós-Ruiz, D. & Amir, R. 2021. Expression characterization of
flavonoid biosynthetic pathway genes and transcription factors in peanut
under water deficit conditions. Frontiers in Plant Science 12: 1-18.
Kumar, S. & Pandey, A.K. 2013.
Chemistry and biological activities of flavonoids: An overview. The
Scientific World Journal 2013: 162750.
Lima, V.M., de Lima Junior, J.A., Santos, H.C.A., da
Silva, A.L.P., de Oleiveira, P.D., de Brito Neto, J.F. 2018. Growth of Capsicum
chinense Jacq. subjected to different irrigation depths in the northeastern
region of Pará, Brazil. Jaboticabal 46(1): 30-37.
Lin, M., Zhang, J. & Chen, X.
2018. Bioactive flavonoids in Moringa oleifera and their
health-promoting properties. Journal of Functional Food 47: 469-479.
Malinowska, M., Donnison, I. & Robson, P. 2020. Morphological and physiological traits that explain yield response to
drought stress in Miscanthus. Agronomy 10: 1194.
Mondal, S. & Rahman, S.T. 2020.
Flavonoids: A vital resource in healthcare and medicine. Pharmacy &
Pharmacology International Journal 8(2): 91-104.
Pakade, V., Cukrowska, E. &
Chimuka, L. 2013. Metal and flavonol contents of Moringa oleifera grown
in South Africa. South African Journal of Science 109(3-4): 7.
Patharkar, O.R. & Walker, J.C. 2019. Connections
between abscission, dehiscence, pathogen defense, drought tolerance, and
senescence. Plant Science 284: 25-29.
Ratzmann, G., Zakhrova, L., Tietjen, B. 2019. Optimal
leaf water status regulation of plants in drylands. Scientific Reports 9: 3768.
Ridwan, Hamim, Suharsono, Nuril Hidayati & Indra Gunawan.
2021. Drumstick (Moringa oleifera) variation in biomass and total
flavonoid content in Indonesia. Biodiversitas 22(1): 491-498.
Sade, N., Rubio-Wilhelmi, M.d.M., Umnajkitikorn, K. & Blumwald, E. 2018. Stress-induced senescence and plant tolerance to abiotic
stress. Journal of Experimental Botany 69(4): 845-853.
Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R.,
Higashi, Y., Yamazaki, M., Tohge, T. & Fernie, A.R. 2013. The flavonoid biosynthetic pathway
in Arabidopsis: Structural
and genetic diversity. Plant Physiology and Biochemistry 72: 21-34.
Sallam, A., Alqudah, A.M., Dawood, M.F.A., Baenziger,
P.S. & Börner, A. 2019. Drought stress tolerance in Wheat and Barley: Advances
in physiology, breeding and genetics research. International Journal of
Molecular Sciences 20(13):
3137.
Sarker,
U. & Oba, S. 2018. Drought stress enhances nutritional and bioactive
compounds, phenolic acids and antioxidant capacity of Amaranthus leafy
vegetable. BMC Plant Biology 18(1): 258.
Shah, S.H., Houborg, R. & McCabe,
M.F. 2017. Response of chlorophyll, carotenoid and SPAD-502 measurement to
salinity and nutrient stress in Wheat (Triticum aestivum L.). Agronomy 7: 61.
Shukla, A., Panchal, H., Mishra, M., Patel, P.R.,
Srivastava, H.S., Patel, P. & Shukla, A.K. 2014. Soil moisture estimation using
gravimetric technique and FDR probe technique: a comparative analysis. American
International Journal of Research in Formal, Applied & Natural
Sciences 8(1): 89-92.
Sims, D.A. & Gamon, J.A. 2002. Relationships
between leaf pigment content and spectral reflectance across a wide range of
species, leaf structures and developmental stages. Remote Sensing of
Environment 81: 337-354.
Thapa, S., Reddy, S.K., Fuentealba, M.P., Xue, Q.,
Rudd, J.C., Jessup, K.E., Devkota R.N. & Liu, S. 2018. Physiological responses to water stress
and yield of winter wheat cultivars differing in drought tolerance. Journal
of Agronomy and Crop Science204(4): 347-358.
Vongsak, B., Sithisarn, P., Mangmool, S.,
Tongpraditchote, S., Wongkrajang, Y. & Gritsanapan, W. 2013. Maximizing total phenolics,
total flavonoids content and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and
Products 44: 566-571.
Wang, T.Y., Li, Q. & Bi, K.S.
2018. Bioactive flavonoids in medicinal plants: Structure, activity and
biological fate. Asian Journal of Pharmaceutical Sciences 13(1): 12-23.
Wasonowati, C., Sulistyaningsih, E.,
Indradewa, D. & Kurniasih, B. 2019. Morphophysiology and the yield of two
types of moringa (Moringa oleifera Lamk) cultivated in two different
regions in Madura. IOP Conf. Series: Earth and Environmental Science 250: 012004.
Yuan, Y., Liu, Y., Wu, C., Chen, S., Wang, Z., Yang,
Z., Qin, S. & Huang, L. 2012. Water deficit affected flavonoid accumulation
by regulating hormone metabolism in Scutellaria baicalensis Georgi
roots. PLoS ONE 7(10): e42946.
Zhang, W., Cao, Z., Xie, Z., Lang,
D., Zhou, L., Chu, Y., Zhao, Q., Zhang, X. & Zhao, Y. 2017. Effect of water
stress on roots biomass and secondary metabolites in the medicinal plant Stellaria
dichotoma L. var. lanceolata Bge. Scientia Horticulturae 224:
280-285.
*Pengarang
untuk surat-menyurat;
email: hamim@apps.ipb.ac.id
|