Sains Malaysiana 52(1)(2023): 71-81
http://doi.org/10.17576/jsm-2023-5201-06
The Potential of Several Wild Invasive Fish Species
as Fish-Based Organic Fertilizers on the Growth of Two Common Vegetables in
Malaysia
(Potensi Beberapa Spesies Ikan Invasif Liar sebagai Baja Organik Berasaskan Ikan ke atas Pertumbuhan Dua Sayuran Umum di Malaysia)
JENNIFER
ANAK FABIAN UNGGANG, MOHD. NIZAM BAKAR & AHMAD BUKHARY AHMAD KHAIR*
School of Biological
Sciences, G08 Building, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
Diserahkan: 28 Jun 2021/Diterima:
21 April 2022
Abstract
Three
common invasive fish species in Malaysia, Peacock Bass (Cichla ocellaris), Nile Tilapia (Oreochromis niloticus) and Algae Suckermouth Catfish (Hypostomus plecostomus)
were assessed for their efficacy as potential fish powder fertilizers. These
invasive fish species were known to disturb the stability of lentic and lotic
aquatic ecosystems in Malaysia, especially O. niloticus and H. plecostomus, altering aquatic habitats
and food webs to be unsuitable for survival of indigenous fish species, while C. ocellaris becoming active aggressive predators on
indigenous fish species, overall reducing indigenous fish species diversity.
Plant primary macronutrient traces showed that C. ocellaris fish powder fertilizer recorded the highest Nitrogen (N) element percentage
(15.81 ± 0.43 N %w/w) and trace Potassium (K) element (28,909.15 ± 32.56 K
mg/kg), while H. plecostomus fish powder
fertilizer recorded the highest trace Phosphorus (P) element (30,562.09 ±
197.11 P mg/kg). Plant secondary macronutrient traces showed that C. ocellaris fish powder fertilizer recorded the highest
trace Magnesium (Mg) element (1496.66 ± 3.99 Mg mg/kg), while H. plecostomus fish powder fertilizer recorded the highest
trace Calcium (Ca) element (6984.48 ± 26.20 Ca mg/kg). Two vegetable species
tested for their growths, the water spinach (Ipomoea aquatica)
and the spinach (Spinacia oleracea),
showed that C. ocellaris fish powder
fertilizer recorded the highest heights (263.74 ± 12.29 mm, 166.35 ± 9.46 mm), the widest leaf width (14.82 ±
0.66 mm, 21.08 ± 1.53 mm), and the widest stalk width (3.06 ± 0.10 mm, 2.89 ±
0.17 mm), respectively, comparable to
the NPK 15:15:15 compound fertilizer, followed by H. plecostomus and O. niloticusfish powder fertilizers. C. ocellaris as predatory invasive fish
species with the highest Mg concentration and moderate Ca concentrations, was
especially suitable for the growth of both semi-aquatic and terrestrial
vegetables grown on low Mg concentration soils.
Keywords: Cichla ocellaris; Hypostomus plecostomus; Oreochromis niloticus; organic fertilizer; vegetables
Abstrak
Tiga spesies ikan invasif umum di Malaysia, Ikan Raja (Cichla ocellaris), Tilapia Nil (Oreochromis niloticus) dan Ikan Bandaraya (Hypostomus plecostomus) dinilai terhadap keberkesanannya sebagai baja serbuk ikan yang berpotensi. Ikan invasif ini diketahui mengganggu kestabilan ekosistem akuatik lentik dan lotik di Malaysia, lebih-lebih lagi O. niloticus dan H. plecostomus, mengubah habitat akuatik dan siratan makanan menjadi tidak sesuai kepada kemandirian spesies ikan asli, manakala C. ocellaris menjadi pemangsa aktif agresif ke atas spesies ikan asli, secara keseluruhannya menurunkan kepelbagaian spesies ikan asli. Surihan makronutrien tumbuhan primer menunjukkan baja serbuk ikan C. ocellaris merekodkan peratusan unsur Nitrogen
(N) (15.81 ± 0.43 N %w/w) dan surihan unsur Kalium (K) (28,909.15 ±
32.56 K mg/kg) tertinggi, manakala baja serbuk ikan H. plecostomus merekodkan surihan unsur Fosforus (P) tertinggi (30,562.09 ± 197.11 P mg/kg). Surihan makronutrien tumbuhan sekunder menunjukkan baja serbuk ikan C. ocellaris merekodkan surihan unsur Magnesium
(Mg) tertinggi (1496.66 ± 3.99 Mg mg/kg), manakala baja serbuk ikan H. plecostomus merekodkan surihan unsur Kalsium (Ca) tertinggi (6984.48 ± 26.20 Ca mg/kg). Dua spesies sayuran yang diuji dari segi pertumbuhan iaitu kangkung (Ipomoea aquatica)
dan bayam (Spinacia oleracea), masing-masing menunjukkan bahawa baja serbuk ikan C. ocellaris merekodkan ketinggian tertinggi (263.74 ± 12.2 mm; 166.35 ± 9.46 mm), lebar daun yang paling besar (14.82
± 0.66 mm; 21.08 ±
1.53 mm) dan batang yang paling tebal (3.06
± 0.10 mm; 2.89 ±
0.17 mm), sebanding dengan baja sebatian NPK 15:15:15, diikuti oleh baja serbuk ikan H. plecostomus dan O. niloticus. C. ocellaris sebagai ikan invasif pemangsa dengan kepekatan tertinggi Mg dan kepekatan Ca sederhana, sesuai untuk pertumbuhan sayuran separa akuatik dan daratan yang ditanam pada tanah yang rendah kepekatan Mg.
Kata kunci: Baja organik; Cichla ocellaris; Hypostomus plecostomus; Oreochromis niloticus; sayuran
RUJUKAN
Amundsen,
P.A., Siwertsson, A., Primicerio,
R. & Bohn, T. 2009. Long-term responses of zooplankton to invasion by a
planktivorous fish in a subarctic watercourse. Freshwater Biology 54:
24-34.
Aranganathan, L. & Radhika Rajasree, S.R. 2016. Bioconversion of marine trash fish
(MTF) to organic liquid fertilizer for effective solid waste management and its
efficacy on tomato growth. Management of Environmental Quality: An
International Journal 27(1): 93-103.
Argüello, G. 2020. Environmentally sound management of ship wastes: Challenges
and opportunities for European ports. Journal of Shipping and Trade 5:
12.
Bedarf, A.T., McKaye, K.R., Van Den Berghe,
E.P., Perez, L.J.L. & Secor, D.H. 2001. Initial
six-year expansion of an introduced piscivorous fish in a tropical Central
American lake. Biological Invasions 3: 391-404.
Benlloch-González, M., Romera, J., Cristescu,
S., Harren, F., Fournier, J.M. & Benlloch, M. 2010. K+ starvation inhibits
water-stress-induced stomatal closure via ethylene synthesis in sunflower
plants. Journal of Experimental Botany 61(4): 1139-1145. doi:10.1093/jxb/erp379
Bouska, W.W., Glover, D.C., Trushenski, J.T., Secchi, S., Garvey, J.E., MacNamara, R., Coulter, D.P., Coulter, A.A., Irons, K.
& Wieland, A. 2020. Geographic-scale harvest program to promote invasivorism of big-headed carps. MDPI Fish Journal 5(29): doi.10.3390/fishes5030029
Canonico, G.C., Arthington, A., McCrary,
J.K. & Thieme, M.L. 2005. The effects of introducted tilapia on native biodiversity. Aquatic
Conservation: Marine and Freshwater Ecosystems 15: 463-483.
Casal, C.M.V. 2006. Global
documentations of fish introduction: the growing crisis and recommendations for
action. Biological Invasions 8: 3-11.
Chen,
Y., Yu, M., Zhu, Z., Zhang, L. & Guo, Q. 2013. Optimisation of potassium
chloride nutrition for proper growth, physiological development, and bioactive
component production in Prunella vulgaris, L. PLoS ONE 8(7): e66259. doi.10.1371/journal.pone.0066259
Chigira, M., Zainab, M., Sian, L.C. &
Ibrahim, K. 2011. Landslides in weathered granitic rocks in Japan and Malaysia. Bulletin of the Geological Society of Malaysia 57: 1-6.
Daskalov, G.M. 2002. Overfishing drives a
trophic cascade in the Black Sea. Marine Ecology Progress Series 225:
53-63.
Daskalov, G.M., Grishin, A.N., Rodionov, S. & Mihneva, V.
2007. Trophic cascades triggered by overfishing reveal possible mechanisms of
ecosystem regime shift. Proceedings of the National Academy of Sciences of
the United States of America 104(25): 10518-10523.
Erkan, N., Selcuk, A.
& Ozden, O. 2010. Amino acid and vitamin
composition of raw and cooked horse mackerel. Food Analytical Methods 3:
269-275.
Food and Agriculture Organization of the United
Nations (FAO). 2010. Introduced Species Facts Sheets. Fisheries and
Aquaculture Department. http://www.fao.org/fishery/introsp/9144/en. Accessed
on 7 March 2006.
Gargallo-Garriga, A., Preece,
C., Sardans, J., Oravec,
M., Urban, O. & Peñuelas, J. 2018. Root exudate
metabolomes change under drought and show limited capacity for recovery. Nature
- Scientific Reports 8: 12696. doi.10.1038/s41598-018-30150-0
Gaygusuz, O., Tarkan,
A.S. & Gaygusuz, C.G. 2007. Changes in the fish
community of the Ömerli Reservior (Turkey) following the introduction of non-native gibel carp Carassius gibelio (Bloch 1782) and other human impacts. Aquatic Invasions 2: 117-120.
Guo,
W., Nazim, H., Liang, Z. & Yang, D. 2016. Magnesium deficiency in plants:
An urgent problem. The Crop Journal 4: 83-91. doi.org/10.1016/j.cj.2015.11.003
Haubrock, P.J., Criado, A., Monteoliva, A.P., Monteoliva, J.A., Santiago, T., Inghilesi,
A.F. & Tricarico, E. 2018. Control and
eradication efforts of aquatic alien fish species in Lake Caicedo Yuso-Arreo. Management of Biological Invasions 9(3): 267-278.
Horn, S.J., Aspmo, S.I. & Eijsink, V.G. 2007. Evaluation of different cod viscera
fractions and their seasonal variation used in a growth medium for lactic acid
bacteria. Enzyme and Microbial Technology 40: 1328-1334.
Iongh, H.H.D. & Zon, J.C.J.V. 1993. Assessment of impact of the
introduction of exotic fish species in north-east Thailand. Aquaculture and
Fisheries Management 24: 279-289.
Johnson, L.E., Bossenbroek, J.M. &
Kraft, C.E. 2006. Patterns and pathways in the post-establishment spread of
non-indigenous aquatic species: The slowing invasion of North American inland
lakes by the zebra mussel. Biological Invasions 8: 475-489.
Khairul Adha, A.R. 2012. Diversity,
ecology, and distribution of non-indigenous freshwater fish in Malaysia. Ph.D.
Thesis, Universiti Putra Malaysia (Unpublished).
Khairul Adha, A.R., Yuzine,
E. & Aziz, A. 2013. The influence of alien fish species on native fish
community structure in Malaysian waters. Kuroshio Science 7(1): 81-93.
Kong, T.B. 1994. Engineering properties of
granitic soils and rocks of Penang Island, Malaysia. Bulletin of the Geological Society
of Malaysia 35: 69-77.
Latimer, G.W. 2016. Official Methods of
Analysis of AOAC International. 20th ed. Gaithersburg, MD, USA: AOAC
International. p. 3172.
Lodge, D.M., Stein, R.A., Brown, K.M., Covich,
A.P., Bronmark, C. & Garvey, J.E. 1998.
Predicting impact of freshwater exotic species on native biodiversity:
Challenges in spatial scaling. Australian Journal of Ecology 23: 53-67.
Malaysian Agricultural Digest. 2013. Chapter 16: Agricultural Chemicals. pp.
155-163.
McNeill, A., Blanc, M. & Rochers,
K.D. 2008. From sea to soil: Adding value to fish waste. SPC Fisheries
Newsletter 126: 31-36.
Mulder, E.G. 1956. Nitrogen-magnesium relationships in crop plants. Plant and Soil 7: 341-376.
Naveed, M., Brown, L.K., Raffan, A.C.,
George, T.S., Bengough, A.G., Roose,
T., Sinclair, I., Koebernick, N., Cooper, L.,
Hackett, C.A. & Hallett, P.D. 2017. Plant exudates may stabilize or weaken
soil depending on species, origin, and time. European Journal of Soil
Sciences 68(6): 806-816. doi.10.1111/ejss.12487.
Nurul Ulfah, K., Mohd Farid, M.A.L. & Adzemi, M.A. 2015. The
effectiveness of fish selage as organic fertilizer on
post-harvest quality of Pak Choy (Brassica rapa L. subsp. chinensis). European
International Journal of Science and Technology 4(5): 163-174.
Park, S., Moon, Y. & Waterland, N.L. 2020. Treatment with
calcium chloride enhances water deficit stress tolerance in Viola (Viola cornuta). Horticulture Science 55(6): 882-887.
Preece, C., Farré-Armengol, G., Llusià, J.
& Peñuelas, J. 2018. Thirsty tree roots exude
more carbon. Tree Physiology 38: 690-695. doi:10.1093/treephys/tpx163
Pullin, R.S., Palmares, M.L., Casal, C.V., Dey, M.M. & Pauly, D. 1997. Environmental
effects of tilapias. In Proceeding of the Fourth International Symposium on
Tilapia in Aquaculture, edited by Fitzsimmons, K. Northeast Regional
Agricultural Engineering Service, USA. pp. 554-572.
Ridolfi, M., Roupsard, O., Garrec, J.P. & Dreyer, E. 1996. Effects of a calcium
deficiency on stomatal conductance and photosynthetic activity of Quercus robur seedlings grown on nutrient solution. Annals
of Forest Science 53(2-3): 325-335.
Ruiz, L.P., Atkinson, C.J. & Mansfield, T.A. 1993. Calcium in
the xylem and its influence on the behaviour of stomata. Philosophical
Transactions of the Royal Society B 341: 67-74.
Sala, O.E., Chapin, F.S. & Armesto,
J.J. 2000. Global biodiversity scenarios for the year 2100. Science 287:
1770-1774.
Senbayram, M., Gransee, A., Wahle, V. & Thiel, H. 2015. Role of magnesium fertiliser in
agriculture: Plant-soil continuum. Crop and Pasture Science 66:
1219-1229. doi.org/10.1071/CP15104
Susanto, I.R. 2015. Sustainable organic farming for environmental
health: A social development model. International Journal of Scientific and
Technology Research 4(5): 196-211.
Tiwari, N. & Chandra, V. 1985. Water spinach - its varieties
and cultivation. Indian Horticulture 30(2): 23-24.
Tränkner, M., Jákli, B., Tavakol, E., Geilfus, C-M., Cakmak, I., Dittert, K. & Senbayram, M.
2016. Magnesium deficiency decreases biomass water-use efficiency and increases
leaf water-use efficiency and oxidative stress in barley plants. Plant Soil 406: 409-423. doi.10.1007/s11104-016-2886-1
Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich,
A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann,
C.R. & Davies, P.M. 2010. Global threats to human water security and river
biodiversity. Nature 467(7315): 555-561.
Weih, M., Liu, H., Colombi, T., Keller, T., Jäck, O., Vallenback, P. & Westerbergh, A. 2021. Nature - Scientific Reports 11:
9012. doi.org/10.1038/s41598-021-88588-8
Welcomme, R.L. 1984. International transfers of inland fish species. In Distribution,
Biology, and Management of Exotic Fishes, edited by Courtenay Jr., W.R.
& Stauffer Jr., J.R. Baltimore: Johns Hopkins University Press. pp. 22-40.
Wittenberg, R.
& Cock, M.J.W. 2001. IAS: A Toolkit of Best Prevention and Management
Practices. Wallingford: CAB International. p. 228.
Yousaf, M.,
Bashir, S., Raza, H., Shah, A.N., Iqbal, J., Arif,
M., Bukhari, M.A., Muhammad, S., Hashim, S., Alkahtani,
J., Alwahibi, M.S. & Hu, C. 2021. Role of
nitrogen and magnesium for growth, yield, and nutritional quality of radish. Saudi
Journal of Biological Sciences 28: 3021-3030. doi.org/10.1016/j.sjbs.2021.02.043
*Pengarang untuk surat-menyurat; email: abukhary@usm.my
|