Sains Malaysiana
52(2)(2023): 501-512
http://doi.org/10.17576/jsm-2023-5202-14
An in
vitro Adipogenic Potential and Glucose Uptake Stimulatory
Effect of Betulinic Acid and Stigmasterol Isolated from Tetracera
indica in 3T3-L1 Cell Line
(Potensi Adipogenik in
vitro dan Kesan Rangsangan Pengambilan Glukosa Asid Betulinik dan
Stigmasterol Dipencilkan daripada Tetracera
indica dalam Titisan Sel 3T3-L1)
MD. MAHMUDUL HASAN1,6, QAMAR UDDIN
AHMED1,2,*, JALIFAH LATIP3, SITI ZAITON MAT SOAD2,
MUHAMMAD TAHER4, AWIS
SUKARNI MOHMAD SABERE2 & ZAINUL AMIRUDDIN ZAKARIA5
1Drug Discovery and Synthetic Chemistry Research Group, Department
of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic
University Malaysia, 25200 Kuantan, Pahang Darul Makmur, Malaysia
2Pharmacognosy Research Group, Department
of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic
University Malaysia, 25200 Kuantan, Pahang Darul Makmur, Malaysia
3Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic
University Malaysia, 25200 Kuantan, Pahang Darul Makmur, Malaysia
5Borneo Research for Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota
Kinabalu 88400, Sabah, Malaysia
6School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s
University, 47500 Subang Jaya, Selangor Darul Ehsan,
Malaysia
Diserahkan: 17 Februari
2022/Diterima: 16 Disember 2022
Abstract
Aerial parts of Tetracera
indica Merr. (Dilleniaceae) are rich in betulinic acid
and stigmasterol and traditionally used to treat diabetes. This
study was aimed to evaluate an in vitro antidiabetic potential of
betulinic acid and stigmasterol to ascertain
whether they may contribute antidiabetic effect to T. indica. Initially, betulinic acid
and stigmasterol were isolated from the most effective subfraction (ethyl
acetate) and subjected to an in vitro antidiabetic
investigation through adipogenesis and fluorescence
glucose (2-NBDG) uptake assays using 3T3-L1 fibroblast. MTT viability assay was performed at 0.78 to 100 µg/mL for 48 h to
determine the safe concentration.
Both compounds were subjected to 2-NBDG uptake test on the differentiated
adipocytes. The cells were treated in safe concentrations (25-100 µg/mL) as
well as in different adipogenic cocktails, which were modified by the addition
of compounds to be investigated and in the presence or absence of insulin (10
µM). Rosiglitazone (10 µM) was used as standard. Stems ethanol extract and its
fractions (hexane and ethyl acetate), betulinic acid and stigmasterol were
found safe at their highest concentration (100 µg/mL) by inhibiting cells well
below their IC50 values viz. 18.60, 35.27, 21.40, 28.86 and 33.06%,
respectively. Both betulinic acid and stigmasterol
at the highest safe concentration (100 µg/mL) significantly (p <0.05) induced
adipogenesis like insulin, enhanced adipogenesis like rosiglitazone and
exhibited glucose uptake activity. The
present study demonstrates that both betulinic acid and stigmasterol
possess an in vitro antidiabetic
potential. However, in vivo antiglycemic study on these compounds and their chemical analogs are still warranted to
ensure their therapeutic potential as safe antidiabetic agents.
Keywords: Adipogenesis; betulinic acid; insulin like activity; insulin sensitizing activity; stigmasterol;
2-NBDG uptake activity; 3T3-L1 preadipocyte cells
Abstrak
Bahagian
udara Tetracera indica Merr.
(Dilleniaceae) kaya dengan asid betulinik dan stigmasterol serta digunakan secara tradisi
untuk merawat diabetes. Kajian ini dijalankan untuk menilai potensi
antidiabetik asid betulinik dan stigmasterol secara in vitro untuk memastikan sama ada
kedua-dua sebatian ini menyumbang kepada kesan antidiabetik oleh T. indica. Asid betulinik dan stigmasterol diasingkan daripada subfraksi (etil asetat) yang paling berkesan. Kesan
antidiabetik in vitro dikaji melalui
asai adipogenesis dan asai pengambilan glukosa berpendaflour (2-NBDG)
menggunakan sel fibroblas
3T3-L1.
Asai kebolehhidupan MTT dijalankan pada kepekatan antara 0.78 hingga 100 µg/mL
selama 48 jam bagi menentukan kepekatan yang selamat. Akhir sekali, kedua-dua
sebatian diuji dengan asai 2-NBDG ke atas sel adiposit terbeza. Sel tersebut
dirawat pada julat kepekatan selamat (25-100 µg/mL) dengan koktel adipogenik
yang berbeza dengan pengubahsuaian adalah pada penambahan sebatian kajian dan
dalam kehadiran (10 µM) atau tanpa insulin. Rosiglitazon (10 µM) digunakan
sebagai sebatian piawai. Ekstrak etanol batang, fraksi (heksana dan etil
asetat), asid betulinik dan stigmasterol dikenal pasti selamat pada kepekatan
tertinggi (100 µg/mL), dengan merencat pertumbuhan sel di bawah nilai IC50 masing-masing iaitu 18.60, 35.27, 21.40, 28.86 dan 33.06%. Asid betulinik dan
stigmasterol, kedua-duanya pada kepekatan selamat tertinggi (100 µg/mL), secara
signifikan (p <0.05) mengaruh adipogenesis
seperti insulin, meningkatkan adipogenesis seperti rosiglitazon dan mempamerkan
aktiviti pengambilan glukosa. Kajian ini menunjukkan kedua-dua asid betulinik
dan stigmasterol berpotensi sebagai antidiabetik in vitro. Walau
bagaimanapun, kajian antiglisemik in vivo terhadap kedua-dua sebatian
dan terbitannya masih diperlukan untuk memastikan potensi terapeutik sebatian
sebagai agen antidiabetik yang selamat.
Kata kunci: Adipogenesis;
aktiviti pengambilan 2-NBDG; aktiviti pensensitifan insulin; aktiviti seperti
insulin; asid betulinik; stigmasterol; sel preadiposit 3T3-L1
RUJUKAN
Ahmed, Q.U., Ali, A.H.M., Mukhtar, S.,
Meshari, A.A., Parveen, H., Sabere, A.S.M., Nawi, M.S.M., Khatib, A., Siddiqui,
M.J., Umar, A. & Alhassan, A.M. 2020.
Medicinal potential of isoflavonoids: Polyphenols that may cure diabetes. Molecules 25(23): 5491.
Ahmed,
Q.U., Umar, A., Taher, M., Susanti, D., Amiroudine, M.Z.A.M. & Latip, J.
2014. Phytochemical investigation of the leaves of Tetracera scandens Linn. and in
vitro antidiabetic activity of hypoletin. Proceedings of the
International Conference on Science, Technology and Social Sciences (ICSTSS) 2012. pp. 591-608.
Ahmed, Q.U., Dogarai, B.B.S., Amiroudine, M.Z.A.M.,
Taher, M., Latip, J., Umar, A. & Muhammad, B.Y. 2012. Antidiabetic activity
of the leaves of Tetracera
indica Merr. (Dilleniaceae) in vivo and in vitro. Journal of Medicinal Plants
Research 6: 5912-5922.
Alhassan, A.M., Ahmed, Q.U., Latip, J. & Shah, S.A.A. 2019. A new sulphated flavone and
other phytoconstituents from the leaves of Tetracera indica Merr. and
their alpha-glucosidase inhibitory activity. Natural
Product Research 33(1): 1-8.
Choi,
J.H., Banks, A.S., Kamenecka, T.M., Busby, S.A., Chalmers, M.J., Kumar, N.,
Kuruvilla, D.S., Shin, Y., He, Y., Bruning, J.B. & Marciano, D.P. 2011.
Anti-diabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated
phosphorylation. Nature 477: 477-481.
Choi, J.Y., Na, M., Hyun, H.I., Ho, L.S., Young, B.E., Yeon,
K.B. & Seog, A.J. 2009. Isolation of betulinic acid, its methyl ester and
guaiane sesquiterpenoids with protein tyrosine phosphatase 1B inhibitory
activity from the roots of Saussurea lappa C.B. Clarke. Molecules 14(1): 266-272.
de Melo, C.L., Queiroz, M.G., Arruda, F.A.C., Rodrigues,
A.M., de Sousa, D.F., Almeida, J.G., Pessoa, O.D., Silveira, E.R., Menezes,
D.B., Melo, T.S., Santos, F.A. & Rao, V.S. 2009. Betulinic acid, a natural pentacyclic
triterpenoid, prevents abdominal fat accumulation in mice fed a high-fat diet. Journal of Agricultural and Food Chemistry 57:
8776-8781.
Drzewoski, J. & Hanefeld, M. 2021. The
current and potential therapeutic use of metformin-the good old drug. Pharmaceuticals 14(2): 122.
Fazakerley, D.J., Koumanov,
F. & Holman, G.D. 2022. GLUT4 on the move. Biochemical Journal 479(3):
445-462.
Hasan, M.M., Ahmed, Q.U., Soad, S.Z.M., Latip, J., Taher, M.,
Syafiq, T.M.F., Sarian, M.N., Alhassan, A.M. & Zakaria, Z.A. 2017.
Flavonoids from Tetracera indica Merr. induce adipogenesis and exert glucose uptake activities in 3T3-L1
adipocyte cells. BMC Complementary Medicine & Therapies 17(1):
431-444.
Jin, T., Yu, H. & Huang, X.F. 2016. Selective binding
modes and allosteric inhibitory effects of lupane triterpenes on protein
tyrosine phosphatase 1B. Scientific Reports 6: 20766.
Kooti,
W. 2016. The role of medicinal plants in the treatment of diabetes: A
systematic review. Electron Physician 8(1): 1832-1842.
Li,
S., Eguchi, N., Lau, H. & Ichii, H. 2020. The role of the Nrf2 signaling in obesity and insulin resistance. International
Journal of Molecular Sciences 21(18): 6973.
Ma, J.Z., Yang, X.W., Zhang, J.J.,
Liu, X., Deng, L.L., Shen, X.L. & Xu, G. 2014. Sterols and terpenoids from Viburnum odoratissimum. Natural Products and Bioprospecting 4: 175-180.
Moseti, D., Regassa, A. & Kim, W.K. 2016. Molecular
regulation of adipogenesis and potential anti-adipogenic bioactive molecules. International Journal of Molecular Sciences 17(1): 124.
Nazaruk,
J. & Borzym-Kluczyk, M. 2015. The role of triterpenes in the management of
diabetes mellitus and its complications. Phytochemistry Reviews 14:
675-690.
Ogurtsova,
K. 2017. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes
for 2015 and 2040. Diabetes Research and
Clinical Practice 128(1): 40-50.
Panda,
S., Jafri, M., Kar, A. & Meheta, B.K. 2009. Thyroid inhibitory,
antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia 80:
123-126.
Park,
J.H., Kim, R.Y. & Park, E. 2012. Antidiabetic activity of fruits and
vegetables commonly consumed in Korea: Inhibitory potential against
α-glucosidase and insulin-like action in
vitro. Food Science and Biotechnology 21: 1187-1193.
Roheem, F.O., Ahmed, Q.U., Mat So'ad,
S.Z., Shah, S.A.A., Latip, J., Alhassan, A.M. & Syed Mohammad, S.N.A. 2020. Assessment of free radical
scavenging and digestive enzyme inhibitory activities of extract, fractions and
isolated compounds from Tetracera macrophylla leaves. Journal of Herbal Medicine 22: 100351.
Ruiz-Ojeda, F.J., Rupérez, A.I., Gomez-Llorente, C., Gil, A.
& Aguilera, C.M. 2016. Cell models and their application for studying
adipogenic differentiation in relation to obesity: A review. International
Journal of Molecular Sciences 17(7): 1040.
Singab, A.N., El-Beshbishy, H.A., Yonekawa, M., Nomura, T.
& Fukai, T. 2005. Hypoglycemic effect of Egyptian Morus alba root bark extract: Effect on
diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. Journal
of Ethnopharmacology 100: 333-338.
Wang, J., Huang, M., Yang, J., Ma, X., Zheng, S., Deng, S.,
Huang, Y., Yang, X. & Zhao, P. 2017. Anti-diabetic activity of
stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Food & Nutrition
Research 61(1): 1364117.
Wang, T., Wang,
J., Hu, X., Huang, X.J. & Chen, G.X. 2020. Current understanding of
glucose transporter 4 expression and functional mechanisms. World
Journal of Biological Chemistry 11(3): 76-98.
World Health Organisation. 2020. Expert panel endorses
protocol for COVID-19 herbal medicine clinical trials.
https://www.afro.who.int/news/expert-panel-endorses-protocol-covid-19-herbal-medicine-clinical-trials. Accessed
on April 14, 2021.
Zimmet,
P.Z. 2017. Diabetes and its drivers: The largest epidemic in human history? Clinical Diabetes and Endocrinology 3(1): 1.
*Pengarang untuk surat-menyurat; email: quahmed@iium.edu.my
|