Sains Malaysiana 52(2)(2023): 513-531

http://doi.org/10.17576/jsm-2023-5202-15

 

UHPLC-Q-Orbitrap HRMS-Based Metabolomic Show Biological Pathways Involved in Rice (Oryza sativa L.) under Fe Toxicity Stress

(Metabolomik UHPLC-Q-Orbitrap Berasaskan HRMS menunjukkan Laluan Biologi Terlibat untuk Beras (Oryza sativa L.) di bawah Tekanan Ketoksikan Fe)

 

TURHADI TURHADI1,2, HAMIM HAMIM3, MUNIF GHULAMAHDI4 & MIFTAHUDIN MIFTAHUDIN3,*

 

 

1Plant Biology Graduate Program, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Kampus IPB Dramaga 16680 Bogor, West Java, Indonesia

2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65415, East Java, Indonesia

3Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Kampus IPB Dramaga 16680 Bogor, West Java, Indonesia

4Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Kampus IPB Dramaga 16680 Bogor, West Java, Indonesia

 

Diserahkan: 19 Julai 2022/Diterima: 30 November 2022

 

Abstract

The iron (Fe) toxicity stress is still a serious problem in rice cultivation, especially on land with high Fe content. The Fe toxicity stress affects various complex physiological aspects of plants. The metabolomic analysis using LC-MS is expected to provide information about rice's metabolism regulation under Fe toxicity stress. The objective of this study was to show the biological pathway signature in rice after exposure to Fe toxicity stress using UHPLC-Q-Orbitrap HRMS-based metabolomic analysis. The two rice varieties, i.e., IR64 (Fe-sensitive) and Pokkali (Fe-tolerant) were analyzed their metabolites using UHPLC-Q-Orbitrap HRMS. The metabolite profiles of both varieties were analyzed using MetaboAnalyst 5.0 software. The results showed that Fe toxicity stress affected the metabolite profile in both root and shoot tissues of two rice varieties. A number of 102 metabolites were detected in root and shoot tissues of rice. The comprehensive univariate and multivariate analyses showed that 1-aminocyclopropane-1-carboxylate (ACC) in shoot tissues and galactose in root tissues was suggested as metabolite markers for Fe tolerance character of rice var. Pokkali.  The genes encoded the enzymes involved in biosynthetic pathway of both metabolite markers could be a target to be explored for Fe toxicity tolerance in rice.

 

Keywords: Galactose; metabolism; metabolite markers; 1-aminocyclopropane-1-carboxylate

 

Abstrak

Tekanan ketoksikan besi (Fe) masih menjadi masalah serius dalam penanaman padi, terutamanya pada tanah yang mempunyai kandungan Fe yang tinggi. Tekanan ketoksikan Fe mempengaruhi pelbagai aspek fisiologi tumbuhan yang kompleks. Analisis metabolomik menggunakan LC-MS dijangka memberikan maklumat tentang peraturan metabolisme beras di bawah tekanan ketoksikan Fe. Objektif kajian ini adalah untuk menunjukkan pengenalan laluan biologi dalam beras selepas terdedah kepada tekanan ketoksikan Fe menggunakan analisis metabolomik berasaskan UHPLC-Q-Orbitrap HRMS. Kedua-dua varieti beras, iaitu IR64 (Fe-sensitif) dan Pokkali (Fe-toleransi) telah dianalisis metabolitnya menggunakan UHPLC-Q-Orbitrap HRMS. Profil metabolit kedua-dua jenis varieti dianalisis menggunakan perisian MetaboAnalyst 5.0. Keputusan menunjukkan bahawa tekanan ketoksikan Fe mempengaruhi profil metabolit dalam kedua-dua tisu akar dan pucuk kedua-dua varieti padi. Sejumlah 102 metabolit telah dikesan dalam tisu akar dan pucuk padi. Analisis komprehensif univariat dan multivariat menunjukkan bahawa 1-aminosiklopropana-1-karboksilat (ACC) dalam tisu pucuk dan galaktosa dalam tisu akar telah dicadangkan sebagai penanda metabolit untuk sifat toleransi Fe bagi beras var. Pokkali. Gen yang mengekod enzim yang terlibat dalam laluan biosintetik kedua-dua penanda metabolit boleh menjadi sasaran untuk diterokai untuk toleransi ketoksikan Fe dalam beras.

 

Kata kunci: Galaktosa; metabolisme; penanda metabolit; 1-aminosiklopropana-1-karboksilat

 

RUJUKAN

Adams, D.O. & Yang, S.F. 1979. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76(1): 170-174.

Albano, J.P., Miller, W.B. & Halbrooks, M.C. 1996. Iron toxicity stress causes bronze speckle, a specific physiological disorder of marigold (Tagetes erecta L.). J. Amer. Soc. Hort. Sci. 121(3): 430-437.

Audebert, A. & Sahrawat, K.L. 2000. Mechanisms for iron toxicity tolerance in lowland rice. J. Plant Nutr. 23(11&12): 1877-1885.

Aung, M.S. & Masuda, H. 2020. How does rice defend against excess iron?: Physiological and molecular mechanisms. Front. Plant. Sci. 11: 1102.

Aung, M.S., Masuda, H., Kobayashi, T. & Nishizawa, N.K. 2018. Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. J. Soil Sci. Plant Nutr. 64(3): 370-385.

Bashir, K., Hanada, K., Shimizu, M., Seki, M., Nakanishi, H. & Nishizawa, N.K. 2014. Transcriptomic analysis of rice in response to iron deficiency and excess. Rice 7(18): 1-15.

Begum, M.C., Islam, M.S., Islam, M., Amin, R., Parvez, M.S. & Kabir, A.H. 2016. Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol. Biochem. 104: 266-277.

Chang, Y., Zhao, C., Zhu, Z., Wu, Z., Zhou, J., Zhao, Y., Lu, X. & Xu, G. 2012. Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. Plant Mol. Biol. 78: 477-487.

De Dorlodot, S., Lutts, S. & Bertin, P. 2005. Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J. Plant Nutr. 28: 1-20.

Do Amaral, M.N., Arge, L.W.P., Benitez, L.C., Danielowski, R., da Silveira, S.F., da Rosa Farias, D., de Oliveira, A.C., da Maia, L.C. & Braga, E.J.B. 2016. Comparative transcriptomics of rice plants under cold, iron, and salt stresses. Funct. Integr. Genomics. 16(5): 567-579.

Dong, X., Chen, W., Wang, W., Zhang, H., Liu, X. & Luo, J. 2014. Comprehensive profiling and natural variation of flavonoids in rice. J. Integrative Plant Biol. 56(9): 876-886.

Engel, K., Asch, F. & Becker, M. 2012. Classification of rice genotypes based on their mechanisms of adaptation to iron toxicity. J. Plant Nutr. Soil. Sci. 175: 871-881.

Finatto, T., de Oliveira, A.C., Chaparro, C., da Maia, L.C., Farias, D.R., Woyann, L.G., Mistura, C.C., Soares-Bresolin, A.P., Llauro, C., Panaud, O. & Picault, N. 2015. Abiotic stress and genome dynamics: Specific genes and transposable elements response to iron excess in rice. Rice 8(13): 1-18.

Gupta, P. & De, B. 2017. Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signaling Behav. 12(7): e1335845.

Hall, R.D. & Hardy, N.W. 2012. Plant Metabolomics: Methods and Protocol. New York: Humana Press.

Hill, C.B. & Roessner, U. 2013. Metabolic profiling of plants by GC-MS. In The Handbook of Plant Metabolomics, edited by Weckwerth, W. & Kahl, G. Weinheim: Wiley-VCH Verlag GmBH & Co.

Hu, C., Shi, J., Quan, S., Cui, B., Kleessen, S., Nikoloski, Z., Tohge, T., Alexander, D., Guo, L., Lin, H., Wang, J., Cui, X., Rao, J., Luo, Q., Zhao, X., Fernie, A.R. & Zhang, D. 2014. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci. Rep. 4: 5067.

Hu, C., Tohge, T., Chan, S.A., Song, Y., Rao, J., Cui, B., Lin, H., Wang, L., Fernie, A.R., Zhang, D. & Shi, J. 2016. Identification of conserved and diverse metabolic shifts during rice grain development. Sci. Rep. 6: 20942.

Jorge, T.F., Rodrigues, J.A., Caldana, C., Schmidt, R., van Dongen, J.T., Thomas-Oates, J. & Antonio, C. 2016. Mass spectrometry-based plant metabolomics: Metabolite response to abiotic stress. Mass Spec. Rev. 35: 620-649.

Jung, E.S., Lee, S., Lim, S.H., Ha, S.H., Liu, K.H. & Lee, C.H. 2013. Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Sci. 210: 61-69.

Kabir, A.H., Begum, M.C., Haque, A., Amin, R., Swaraz, A.M., Haider, S.A., Paul, N.K. & Hossain, M.M. 2016. Genetic variation in Fe toxicity tolerance is associated with the regulation of translocation and chelation of iron along with antioxidant defence in shoots of rice. Funct. Plant Biol. 43(11): 1070-1081.

Khabaz-Saberi, H., Rengel, Z., Wilson, R. & Setter, T.L. 2010. Variation for tolerance to high concentration of ferrous iron (Fe2+) in Australian hexaploid wheat. Euphytica 172(2): 275-283.

Kovačević, V., Vukadinović, V. & Bertić, B. 1988. Excessive iron and aluminum uptake and nutritional stress in corn (Zea mays L.) plants. J. Plant Nutr. 11(6-11): 1263-1272.

Kusano, M., Yang, Z., Okazaki, Y., Nakabayashi, R., Fukushima, A. & Saito, K. 2015. Using metabolomic approaches to explore chemical diversity in rice. Mol. Plant. 8: 58-67.

Lim, D.K., Mo, C., Lee, J.H., Long, N.P., Dong, Z., Li, J., Lim, J. & Kwon, S.W. 2018a. The integration of multi-platform MS-based metabolomics and multivariate analysis for the geographical origin discrimination of Oryza sativa L. J. Food Drug Anal. 26: 769-777.

Lim, D.K., Long, N.P., Mo, C., Dong, Z., Lim, J. & Kwon, S.W. 2018b. Optimized mass spectrometry-based metabolite extraction and analysis for the geographical discrimination of white rice (Oryza sativa L.): A method comparison study. J. AOAC Intern. 101(2): 498-506.

Lucassen, E.C.H.E.T., Smolders, A.J.P. & Roelofs, J.G.M. 2000. Increased groundwater levels cause iron toxicity in Glyceria fluitans (L.). Aquatic Bot. 66: 321-327.

Mahender, A., Swamy, B.P.M., Anandan, A. & Ali, J. 2019. Tolerance of iron deficient and -toxic soil conditions in rice. Plants 8: 31.

Navarro-Reig, M., Jaumot, J., Piña, B., Moyano, E., Galceran, M.T. & Tauler, R. 2017. Metabolomic analysis of the effects of cadmium and copper treatment in Oryza sativa L. using untargeted liquid chromatography coupled to high resolution mass spectrometry and all-ion fragmentation. Metallomics 9(6): 660-675.

Navarro-Reig, M., Jaumot, J., García-Reiriz, A. & Tauler, R. 2015. Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies. Anal. Bioanal. Chem. 407: 8835-8847.

Nugraha, Y., Ardie, S.W., Ghulamahdi, M., Suwarno & Aswidinnoor, H. 2015. Nutrient culture media with agar is effective for early and rapid screening of iron toxicity tolerance in rice. J. Crop Sci. Biotech. 19(1): 61-70.

Obata, T. & Fernie, A.R. 2012. The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol. Life Sci. 69: 3225-3243.

Oh, M., Park, S., Kim, H., Choi, G.J. & Kim, S.H. 2021. Application of UPLC-QTOF-MS based untargeted metabolomics in identification of metabolites induced in pathogen-infected rice. Plants (Basel) 10(2): 213.

Polko, J.K. & Kieber, J.J. 2019. 1-Aminocyclopropane 1-carboxylic acid and its emerging role as an ethylene independent growth regulator. Front. Plant Sci. 10: 1602.

Quinet, M., Vromman, D., Clippe, A., Bertin, P., Lequeux, H., Dufey, I., Lutts, S. & Lefèvre, I. 2012. Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity. Plant Cell Environ. 35(10): 1837-1859.

Sangwan, N.S., Tiwari, P., Mishra, S.K., Yadav, R.K., Tripathi, S., Kushwaha, A.K. & Sangwan, R.S. 2015. Plant metabolomics: An overview of technology platforms for applications in metabolism. In PlantOmics: The Omics of Plant Science, edited by Barh, D., Khan, M. & Davies, E. New Delhi: Springer.

Schellingen, K., Van Der Straeten, D., Vandenbussche, F., Prinsen, E., Remans, T., Vangronsveld, J. & Cuypers, A. 2014. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biol. 14: 214.

Snowden, R.E.D. & Wheeler, B.D. 1993. Iron toxicity to fen plant species. J. Ecol. 81: 35-46.

Stein, R.J., Duarte, G.L., Scheunemann, L., Spohr, M.G., de Araújo Júnior, A.T., Ricachenevsky, F.K., Rosa, L.M.G., Zanchin, N.I.T., Santos, R.P. & Fett, J.P. 2019. Genotype variation in rice (Oryza sativa L.) tolerance to Fe toxicity might be linked to root cell wall lignification. Front. Plant Sci. 10: 746.

Turhadi, Miftahudin, Hamim & Ghulamahdi, M. 2021. The effectiveness of nutrient culture solutions with agar addition as an evaluation media of rice under iron toxicity conditions. Bioeduscience 5(1): 24-29.

Turhadi, T., Hamim, H., Ghulamahdi, M. & Miftahudin, M. 2019. Iron toxicity-induced physiological and metabolite profile variations among tolerant and sensitive rice varieties. Plant Signal Behav. 14(12): 1682829.

Turhadi, T., Hamim, H., Ghulamahdi, M. & Miftahudin, M. 2018. Morpho-physiological responses of rice genotypes and its clustering under hydroponic Fe toxicity conditions. Asian J. Agri. Biol. 6(4): 495-505.

Vanderstraeten, L. & Van Der Straeten, D. 2017. Accumulation and transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: Current status, considerations for future research and agronomic applications. Front. Plant Sci. 8: 38.

Wang, Y., Xu, L., Shen, H., Wang, J., Liu, W., Zhu, X., Wang, R., Sun, X. & Liu, L. 2015. Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb & Cd stress response of radish roots. Sci. Rep. 5: 18296.

Widodo, Patterson, J.H., Newbigin, E., Tester, M., Bacic, A. & Roessner, U. 2009. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J. Exp. Bot. 60(14): 4089-4103.

Wu, L.B., Shhadi, M.Y., Gregorio, G., Matthus, E., Becker, M. & Frei, M. 2014. Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7(1): 8.

Wu, L.B, Ueda, Y., Lai, S.K. & Frei, M. 2016. Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.). Plant Cell Environ. 40(4): 570-584.

Xia, J. & Wishart, D.S. 2016. Using metaboAnalyst 3.0 for comprehensive metabolomics data analysisCurr. Protoc. Bioinformatics 55: 14.10.1-14.10.91.

Xiao, R., Ma, Y., Zhang, D. & Qian, L. 2018. Discrimination of conventional and organic rice using untargeted LC-MS based metabolomics. J. Cereal Sci. 82: 73-81.

Yancey, P.H. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208(15): 2819-2830.

Yoon, G.M. & Kieber, J.J. 2013. 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants. AoB PLANTS 5: plt017.

Yoshida, S., Forno, D.A., Cock, J.H. & Gomez, K.A. 1976. Laboratory Manual for Physiological Studies of Rice. Manila: The International Rice Research Institute.

 

*Pengarang untuk surat-menyurat; email: miftahudin@apps.ipb.ac.id

   

sebelumnya