Sains Malaysiana 52(4)(2023):
1161-1171
http://doi.org/10.17576/jsm-2023-5204-10
Gibberellic
Acid Supplements Mitigate the Sodium Chloride Effects on Onion Seed Germination
and Its Physio-Chemical Attributes
(Suplemen
Asid Giberelik Mengurangkan Kesan Natrium Klorida pada Percambahan Biji Bawang
dan Atribut Fisio-Kimianya)
IKRAM-UL
HAQ1, NAZIA PARVEEN GILL2, GHULAM YASIN3,
SAHIFA MEMON1, ZAINAB SOOMRO1, FAHEEM AHMED BHATTI1,4,
MEHWISH BALOCH1 & CHANDA BAKHTAWAR BALOCH1
1Institute
of Biotechnology and Genetic Engineering (IBGE), University of Sindh,
Jamshoro-76080, Pakistan
2Department
of Statistics, University of Sindh, Jamshoro-76080, Pakistan
3Department
of Botany, Bahauddin Zakariya University, Multan-60800, Pakistan
4Sindh
Agriculture Department, Tandojam-70060, Pakistan
Diserahkan:
3 Julai 2022/Diterima: 17 Mac 2023
Abstract
The mitigative effect of gibberellic acid
(GA3) for salt (NaCl) stresses on seed germination attributes of
onion (Allium cepa L.) cultivar Nasarpuri was assessed. Seeds were
moisturized with NaCl (0-, 100- and 200-mM) and GA3 (250 ppm) before
and after sowing for seed germination in 1st week than in 2nd week, GA3 sprayed once foliarly and NaCl in rooting region. At the
end of 1st week, an increase in seed germination rate was
observed in seeds supplemented with GA3 from control (85.0%) to
97.5% and from NaCl stressed seeds (72.5% and 50.0%) to 85.0% and 62.5%,
respectively (p ≤ 0.05).
This reduction in seed germination was caused by salt stresses after 96th hours
of sowing, inhibition in GA3-biosynthesis GA3 and delay
in α-amylases activation observed in salt stressed seed cultures.
The seedling vigor index (SVI) was observed higher in foliarly GA3 sprayed cultures of both control as well as saline stressed cultures. The
seedlings supplemented with GA3, decrease in malondialdehyde (MDA), H2O2, Na+/K+,
Na+ and Cl- contents, while increases seedling biomass,
chlorophyll contents, total proteins, and sugars in NaCl stressed seedlings.
Interestingly, GA3 also increased (p ≤ 0.05)
the osmoprotectants in seedlings including abscisic acid (AsA), carotenoids,
phenolics and proline contents to depict in stress alleviation. This study may be
concluded by the fact that GA3 minimizes salinity stresses on seed
germination as well as further seedling growth with the increased production of
organic osmoprotectants as saline stress neutralizers.
Keywords: Allium cepa L.; antioxidative responses; gibberellic acid (GA3);
H2O2 contents; saline stresses
Abstrak
Kesan
mitigasi asid giberelik (GA3) untuk garam (NaCl) menegaskan sifat
percambahan benih bawang (Allium cepa L.) kultivar Nasarpuri telah
dinilai. Benih telah dilembapkan dengan NaCl (0-, 100- dan 200-mM) dan GA3 (250 ppm) sebelum dan selepas disemai untuk percambahan benih pada minggu
pertama berbanding minggu ke-2, GA3 disembur sekali pada daun dan
NaCl di kawasan pengakaran. Pada akhir minggu pertama, peningkatan kadar
percambahan biji benih diperhatikan pada benih yang ditambah dengan GA3 daripada kawalan (85.0%) kepada 97.5% dan daripada benih bertekanan NaCl (72.5%
dan 50.0%) kepada 85.0% dan 62.5% masing-masing (p). ≤ 0.05). Pengurangan
dalam percambahan benih ini disebabkan oleh tegasan garam selepas 96 jam
penyemaian, perencatan dalam GA3-biosintesis GA3 dan
kelewatan dalam pengaktifan α-amilase yang diperhatikan
dalam kultur benih bertekanan garam. Indeks vigor ankak benih (SVI)
diperhatikan lebih tinggi dalam kultur semburan GA3 daun bagi
kedua-dua kawalan dan juga kultur bertekanan garam. Anak benih yang ditambah
dengan GA3 mengurangkan kandungan malondialdehid (MDA), H2O2,
Na+/K+, Na+ dan Cl-, sambil meningkatkan biojisim anak benih, kandungan
klorofil, jumlah protein dan gula pada anak pokok bertekanan NaCl. Menariknya,
GA3 juga meningkatkan (p ≤ 0.05) osmopelindung dalam anak
benih termasuk kandungan asid absisik (AsA), karotenoid, fenol dan prolin untuk
menggambarkan pengurangan tekanan. Kajian ini boleh disimpulkan oleh fakta
bahawa GA3 meminimumkan tegasan kemasinan pada percambahan biji
benih serta pertumbuhan anak benih selanjutnya dengan peningkatan pengeluaran
osmopelindung organik sebagai peneutral tegasan garam.
Kata
kunci: Allium cepa L.; asid giberelik (GA3); gerak balas
antioksidatif; kandungan H2O2, tegasan garam
RUJUKAN
Abbas, S. & Waheed, A. 2021. Fiscal deficit and
trade deficit nexus in Pakistan: An econometric inquiry. Panoeconomicus 68(5):
745-763.
Aglaia, L., Georgios, Z., Theodoros, V. & Ioannis,
N. 2011. Effect of NaCl and GA3 on seed germination and seedling
growth of eleven medicinal and aromatic crops. Journal of Medicinal Plants Research 5(17): 4065-4073.
Ahanger, M., Qin, C., Maodong, Q., Dong, X., Ahmad,
P., Abd-Allah, E. & Zhang, L. 2019. Spermine application alleviates
salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary
metabolite accumulation and differentially regulating antioxidant metabolism. Plant Physiology and Biochemistry 144: 1-13.
Ahmad, S., Cui, W., Kamran, M., Ahmad, I., Meng, X.,
Wu, X., Su, W., Javed, T., ElSerehy, H.A., Wu, X. & Jia, Z. 2021. Exogenous
application of melatonin induces tolerance to salt stress by improving the
photosynthetic efficiency and antioxidant defense system of maize seedling. Journal of Plant Growth Regulation 40(3): 1270-1283.
Ali, M., Hossain, M., Zakaria, M., Hossain, T.,
Naznin, A. & Islam, M. 2015. Effect of GA3 on quality seed
production of onion in Bangladesh. Ecofriendly
Agricultural Journal 8(03):
47-50.
Allakhverdiev, S., Sakamoto, A., Nishiyama, Y., Inaba,
M. & Murata, N. 2000. Ionic and osmotic effects of NaCl-induced
inactivation of photosystems I and II in Synechococcus sp. Plant Physiology 123(3): 1047-1056.
Arnon, D. 1949. Copper enzymes in isolated chloroplasts.
Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15.
Azam, A. & Shafique, M. 2017. Agriculture in
Pakistan and its impact on economy. International
Journal of Advanced Science and Technology 103: 47-60.
Bates, L.S., Waldren, R.P. & Teare, I.J.P. 1973.
Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207.
Belaqziz, R., Romane, A. & Abbad, A. 2009. Salt
stress effects on germination, growth and essential oil content of an endemic
thyme species in Morocco (Thymus
maroccanus Ball.). Journal of Applied
Sciences Research 5(July):
858-863.
Brennan, T. & Frenkel, C. 1977. Involvement of
hydrogen peroxide in the regulation of senescence in pear. Plant Physiology 59(3):
411-416.
Caliński, T. 1981. Principles and procedures of
statistics: A biometrical approach. Biometrics 37(4): 859-860. doi:10.2307/2530180
Camara, M., Vandenberghe, L., Rodrigues, C., de
Oliveira, J., Faulds, C., Bertrand, E. & Soccol, C. 2018. Current advances
in gibberellic acid (GA3) production, patented technologies and
potential applications. Planta 248(5): 1049-1062.
Catsky, J. 1974. Water content. In Methods of Studying Plant Water Relations.
Berlin: Springer-Verlag. pp. 121-131.
Chapman, H. & Pratt, P. 1961. Method of Analysis
for Soils, Plants and Waters. University of California (Riverside),
Division of Agriculture Sciences.
Chauhan, A., Abu Amarah, B., Kumar, A., Verma, J.,
Ghramh, H., Khan, K. & Ansari, M. 2019. Influence of gibberellic acid and
different salt concentrations on germination percentage and physiological
parameters of oat cultivars. Saudi
Journal of Biological Sciences 26(6):
1298-1304.
Colomer-Winter, C., Flores-Mireles, A., Baker, S.,
Frank, K., Lynch, A.,
Hultgren, S., Kitten, T. & Lemos, J.
2018. Manganese acquisition is essential for
virulence of Enterococcus faecalis. PLoS
Pathogens 14(9): e1007102.
Dar, Z., Dar, S., Khan, J., Lone, A., Langyan, S.,
Lone, B., Kanth, R.H., Iqbal, A., Rane, J., Wani, S.H.,
Alfarraj, S., Alharbi, S.A., Brestic, M. & Ansari, M. 2021. Identification for
surrogate drought tolerance in maize inbred lines utilizing high-throughput
phenomics approach. PLoS ONE 16(7): e0254318.
Dubois, M., Gilles, K., Hamilton, J., Rebers, P. &
Smith, F. 1956. Colorimetric method for determination of sugars and related
substances. Analytical Chemistry 28(3): 350-356.
FAO. 2021. FAOSTAT. Food and Agriculture
Organization of the United Nations. Rome: FAO.
Gharib, F., Zeid, I., Ghazi, S. & Ahmed, E. 2018.
Physiological effects of ascorbic and gallic acids on growth and metabolic
activities of cowpea (Vigna unguiculata L.) plants. Journal of Plant Physiol. and
Pathology 6(4): 2-9.
Ghodrat, V. & Rousta, M. 2012. Effect of priming
with gibberellic acid (GA3) on germination and growth of corn (Zea mays L.) under saline conditions. International Journal of Agriculture and
Crop Sciences 4(13):
882-885.
Hamayun, M., Khan, S., Khan, A., Shin, J., Ahmad, B.,
Shin, D. & Lee, I. 2010. Exogenous gibberellic acid reprograms soybean to
higher growth and salt stress tolerance. Journal
of Agricultural and Food Chemistry 58(12):
7226-7232.
Heath, R. & Packer, L. 1968. Photoperoxidation in
isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid
peroxidation. Archives of Biochemistry
and Biophysics 125(1):
189-198.
Hillel, D., Braimoh, A. & Vlek, P. 2008. Soil
degradation under irrigation. In Land Use
and Soil Resources. Springer. pp: 101-119.
Ibrahim, M., Ali, A., Elsiddig, A., Zhou, G., Nimir,
N., Agbna, G. & Zhu, G. 2021. Mitigation effect of biochar on sorghum
seedling growth under salinity stress. Pakistan
Journal of Botany 53(2):
387-392.
Ibrahim, M., Zhu, X., Zhou, G., Ali, A., Ahmad, I.
& Farah, G. 2018. Nitrogen fertilizer alleviated negative impacts of NaCl
on some physiological parameters of wheat. Pakistan
Journal of Botany 50(6):
2097-2104.
Javid, M., Sorooshzadeh, A., Moradi, F., Modarres, S.,
Mohammad, S. & Allahdadi, I. 2011. The role of phytohormones in alleviating
salt stress in crop plants. Australian
Journal of Crop Science 5(6):
726-734.
Kadayifci, A., Tuylu, G., Ucar, Y. & Cakmak, B.
2005. Crop water use of onion (Allium
cepa L.) in Turkey. Agricultural
Water Management 72(1):
59-68.
Kandil, A., Sharief, A., Abido, W. & Awed, A.
2014. Effect of gibberellic acid on germination behaviour of sugar beet
cultivars under salt stress conditions of Egypt. Sugar Tech 16(2):
211-221.
Kaur, S., Gupta, A. & Kaur, N. 1998. Gibberellin A3 reverses the effect of salt stress in chickpea (Cicer arietinum L.)
seedlings by enhancing amylase activity and mobilization of starch in
cotyledons. Plant Growth Regulation 26(2): 85-90.
Law, M., Charles, S. & Halliwell, B. 1983.
Glutathione and ascorbic acid in spinach (Spinacia oleracea)
chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochemical Journal 210(3): 899-903.
Lerner, H.R. & Amzallag, G.N. 1994. The response
of plants to salinity: A working hypothesis. In Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, edited by Cherry, J.H. NATO ASI Series, vol
86. Berlin, Heidelberg: Springer. pp: 463-476.
Lima, M. & Leonardo, T. 2008. Onion production in
salinized soil. Brazilian Journal of
Agricultural and Environmental Engineering 12: 231-235.
Lin, J. & Stafford, A. 1987. Comparison of the
endogenous gibberellins in the shoots and roots of vernalized and
non-vernalized Chinese Spring wheat seedlings. Phytochemistry 26(9):
2485-2488.
Liu, L., Xia, W., Li, H., Zeng, H., Wei, B., Han, S.
& Yin, C. 2018. Salinity inhibits rice seed germination by reducing
α-amylase activity via decreased bioactive gibberellin content. Frontiers in Plant Science 9: 275.
Lowry, O. & Rosebrough, N. 1951. Protein
measurement with the folin phenol reagent. Journal
of Biological Chemistry 193(1):
265-275.
Lutts, S., Kinet, J. & Bouharmont, J. 1996.
NaCl-induced senescence in leaves of rice (Oryza
sativa L.) cultivars differing in salinity resistance. Annals of Botany 78(3):
389-398.
Machado, R. & Serralheiro, R. 2017. Soil salinity:
Effect on vegetable crop growth. Management practices to prevent and mitigate
soil salinization. Horticulturae 3(2): 30.
Mahender, A., Anandan, A. & Pradhan, S. 2015.
Early seedling vigour, an imperative trait for direct-seeded rice: An overview
on physio-morphological parameters and molecular markers. Planta 241(5):
1027-1050.
Majcherczyk, A., Rakoczy, L. & Huttermann, A.
1986. Improvements in methods for determination of abscisic acid and
indole-3-acetic acid by high-performance liquid chromatography. Journal of Chromatography 357: 399-408.
Manniche, L. 1989. An
Ancient Egyptian Herbal University of Texas Press Austin. Vol. 163.
Marles, R. & Farnsworth, N. 1995. Antidiabetic
plants and their active constituents. Phytomedicine 2(2): 137-189.
Mbarki, S., Skalicky, M., Vachova, P., Hajihashemi,
S., Jouini, L., Zivcak, M., Tlustos, P., Brestic, M., Hejnak, V. & Khelil,
A.Z. 2020. Comparing salt tolerance at seedling and germination stages in local
populations of Medicago ciliaris L.
to Medicago intertexta L. and Medicago scutellata L. Plants 9(4): 526.
Miller, G. 1959. Use of dinitrosalicylic acid reagent
for determination of reducing sugar. Analytical
Chemistry 31(3): 426-428.
Moons, A., Bauw, G., Prinsen, E., Van Montagu, M.
& Van-Der, S.D. 1995. Molecular and physiological responses to abscisic
acid and salts in roots of salt-sensitive and salt-tolerant Indica rice
varieties. Plant Physiology 107(1): 177-186.
Munns, R., Schachtman, D. & Condon, A. 1995. The
significance of a two-phase growth response to salinity in wheat and barley. Functional Plant Biology 22(4): 561-569.
Nasri, N., Maatallah, S., Saidi, I. & Lachaal, M.
2017. Influence of salinity on germination, seedling growth, ion content and
acid phosphatase activities of Linum
usitatissimum L. Journal of Animal
and Plant Sciences 27(2):
517-521.
Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan,
S. & Ali, K. 2010. Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. African Journal of Biotechnology 9(34): 5475-5480.
Negrao, S., Schmöckel, S. & Tester, M. 2017.
Evaluating physiological responses of plants to salinity stress. Annals of Botany 119(1): 1-11.
Nounjan, N. & Theerakulpisut, P. 2012. Effects of
exogenous proline and trehalose on physiological responses in rice seedlings
during salt-stress and after recovery. Plant
Soil and Environment 58(7):
309-315.
Parida, A., Das, A. & Mittra, B. 2004. Effects of
salt on growth, ion accumulation, photosynthesis and leaf anatomy of the
mangrove, Bruguiera parviflora. Trees Structure and Function 18(2): 167-174.
Rahman, M., Haque, M., Karim, M. & Ahmed, M. 2006.
Effects of gibberellic acid (GA3) on breaking dormancy in garlic (Allium sativum L.). International Journal of Agriculture and Biology 8(1): 63-65.
Roychoudhury, A., Basu, S. & Sengupta, D. 2009.
Effects of exogenous abscisic acid on some physiological responses in a popular
aromatic Indica rice compared with those from two traditional non-aromatic
Indica rice cultivars. Acta Physiologiae
Plantarum 31(5): 915-926.
Salih, E., Zhou, G., Muddathir, A., Ibrahim, M.,
Ahmed, N., Ali, A., Ashraf, N.A. & Ahmad, I. 2022. Effects of seeds priming
with plant growth regulators on germination and seedling growth of hargel (Solenostemma
argel (Del.) Hayne) under salinity stress. Pakistan Journal of Botany 54(5):
1579-1587.
Srivastava, N. & Srivastava, A. 2007. Influence of
gibberellic acid on 14CO2 metabolism, growth, and
production of alkaloids in Catharanthus
roseus. Photosynthetica 45(1): 156-160.
Steel, R.G.D. & Torrie, J.H. 1980. Principles and Procedures of Statistics, A
Biometrical Approach. McGraw-Hill Kogakusha, Ltd.
Sumner, J. 2019. Plants
Go to War: A Botanical History of World War II. Jefferson, North
California: McFarland and Company, Inc.
Takemura, T., Hanagata, N., Sugihara, K., Baba, S.,
Karube, I. & Dubinsky, Z. 2000. Physiological and biochemical responses to
salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany 68(1):
15-28.
Ti, H., Li, Q., Zhang, R., Zhang, M., Deng, Y., Wei,
Z., Chi, J. & Zhang, Y. 2014. Free and bound phenolic profiles and
antioxidant activity of milled fractions of different indica rice varieties
cultivated in southern China. Food
Chemistry 159: 166-174.
Tuna, A., Kaya, C., Dikilitas, M. & Higgs, D.
2008. The combined effects of gibberellic acid and salinity on some antioxidant
enzyme activities, plant growth parameters and nutritional status in maize
plants. Environmental and Experimental
Botany 62(1): 1-9.
Turner, N. 1981. Techniques and experimental
approaches for the measurement of plant water status. Plant and Soil 58(1):
339-366.
Vetrano, F., Moncada, A. & Miceli, A. 2020. Use of
gibberellic acid to increase the salt tolerance of leaf lettuce and rocket
grown in a floating system. Agronomy,
MDPI 10(4): 505.
Waterborg, J. 2009. The Lowry method for protein
quantitation. In The Protein Protocols
Handbook. Springer. pp: 7-10.
Wellburn, A. 1994. The spectral determination of
chlorophylls a and b, as well as total carotenoids, using various solvents with
spectrophotometers of different resolution. Journal
of Plant Physiology 144(3):
307-313.
Wu, Y., Jin, X., Liao, W., Hu, L., Dawuda, M., Zhao, X., Liu, J., Li, S.,
Wang, D., Guan, H. &Yu, J. 2018. 5-Aminolevulinic acid (ALA) alleviated salinity stress in
cucumber seedlings by enhancing chlorophyll synthesis pathway. Frontiers in Plant Science 9: 635.
Yurekli, F., Porgali, Z. & Turkan, I. 2004.
Variations in abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin
concentrations in two bean species subjected to salt stress. Acta Biologica Cracoviensia Series Botanica 46: 201-212.
Zhang, J. & Zhang, X. 1994. Can early wilting of
old leaves account for much of the ABA accumulation in flooded pea plants? Journal of Experimental Botany 45(9): 1335-1342.
*Pengarang untuk surat-menyurat;
email: rao.ikram@yahoo.com
|