Sains Malaysiana 52(4)(2023):
1259-1272
http://doi.org/10.17576/jsm-2023-5204-17
Optimization of Tween 80 and PEG-400
Concentration in Indonesian Virgin Coconut Oil Nanoemulsion as Antibacterial against Staphylococcus aureus
(Pengoptimuman Kepekatan Tween 80 dan PEG-400 dalam
Nanoemulsi Minyak Kelapa Dara Indonesia sebagai Antibakteria terhadap Staphylococcus aureus)
MIKSUSANTI1,
ELSA FITRIA APRIANI2,* & AZZAHRA HITHTHAH BAMA BIHURININ2
1Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih,
Km. 32, Ogan Ilir, South
Sumatra, Indonesia
2Department
of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih,
Km. 32, Ogan Ilir, South
Sumatra, Indonesia
Diserahkan: 25 Oktober 2022/Diterima:
6 Mac 2023
Abstract
Virgin Coconut
Oil (VCO) can act as an antibacterial due to free fatty acids. To increase the
stability of VCO, the VCO can be formed into nanoemulsion preparations. This study aimed to optimize the concentration of Tween 80 and
Polyethylene glycol-400 (PEG-400) in nanoemulsion formula and determine antibacterial activity against Staphylococcus
aureus. The content of VCO was determined using Gas Chromatography-Mass
Spectrometry (GC-MS), and the results showed that VCO contained lauric acid, palmitic acid, caprylic acid, oleic acid, capric acid, and stearic acid.
Optimization was carried out using the 22 factorial design method on
the response of pH, density, percent transmittance, particle size, and polydispersity index. The optimum formula was obtained at
concentrations of Tween 80 and PEG-400 40% and 26%, respectively, with a
desirability value of 0.961. The optimum formula showed no phase separation and
a significant decrease in pH (p>0.05). The optimum and comparison formula
(pure VCO) had significantly different antibacterial activity (p<0.05) where
the diameter of the inhibition zone was 24.77±1.66 mm and 16.73±2.00 mm,
Minimum Inhibitory Concentration (MIC) of 1250 ppm and 2500 ppm, Minimum
Bactericidal Concentration (MBC) of 2500 ppm and more than 2500 ppm,
respectively. The optimum formula of VCO nanoemulsion was proven to have good stability and a potent antibacterial activity.
Keywords: Antibacterial;
factorial design; nanoemulsion; Staphylococcus aureus; virgin coconut oil
Abstrak
Minyak Kelapa Dara (VCO) boleh bertindak sebagai antibakteria kerana kandungan asid lemak bebas. Bagi meningkatkan kestabilan VCO, ia boleh disediakan dalam bentuk nano-emulsi. Tujuan kajian ini dijalankan adalah untuk mendapatkan kepekatan yang optimum bagi Tween 80 dan Polietilena glikol-400 (PEG-400) di dalam formulasi nano-emulsi dan untuk menentukan aktiviti antibakteria terhadap Staphylococcus aureus. Kandungan VCO telah dianalisis dengan menggunakan Kromatografi gas–spektrometri jisim (GC-MS) dan hasilnya menunjukkan VCO mengandungi asid laurik, asid palmitik, asid kaprilat, asid oleik, asid kaprik dan asid stearik. Pengoptimuman telah dijalankan menggunakan kaedah reka bentuk faktorial 22 pada tindak balas pH, ketumpatan, peratus transmisi, saiz zarah dan indeks polidispersiti.
Formula optimum didapati pada kepekatan Tween 80 dan PEG-400 masing-masing 40% dan 26%, dengan nilai kemahuan 0.961. Formula optimum juga menunjukkan tiada pemisahan campuran mahupun penurunan pH yang ketara (p>0.05). Formula optimum dan perbandingannya (VCO tulen) didapati mempunyai aktiviti antibakteria yang berbeza secara signifikan (p<0.05) dengan diameter zon inhibasi masing-masing ialah 24.77±1.66 mm dan 16.73±2.00 mm, Kepekatan Perencatan Minimum (MIC) 1250 ppm dan 2500 ppm dan Kepekatan Bakteria Minimum (MBC) 2500 ppm dan lebih daripada 2500 ppm.
Formula optimum nano-emulsi VCO terbukti mempunyai kestabilan yang baik dan aktiviti antibakteria yang tinggi.
Kata kunci: Antibakteria; minyak kelapa dara; nano-emulsi; reka bentuk faktor; Staphylococcus aureus
RUJUKAN
Abllah, Z. & Shahdan,
I. 2018. Virgin coconut oil and its antimicrobial properties
against pathogenic microorganisms: A review. Journal of Research in Health
Sciences 8: 192-199. https://doi.org/10.2991/IDCSU-17.2018.51
Agarwal,
R. 2017. Extraction processes of virgin coconut oil. Food Processing &
Technology 4: 1-3. https://doi.org/10.15406/mojfpt.2017.04.00087
Álvarez-Chimal, R., García-Pérez,
V.I., Álvarez-Pérez, M.A., Tavera-Hernández,
R., Reyes-Carmona, L., Martínez-Hernández, K. &
Arenas-Alatorre, J.A. 2022. Influence of the particle
size on the antibacterial activity of green synthesized zinc oxide
nanoparticles using Dysphania ambrosioides extract, supported by molecular docking analysis. Arabian Journal of
Chemistry 15(6): 10384. https://doi.org/10.1016/j.arabjc.2022.103804
Anzaku, A.A., Akyala, A., Adeola, J. & Ewenighi, C. 2017. Antibacterial activity of lauric acid on some selected clinical isolates. Annals
of Clinical and Laboratory Research 5: 1-5. https://doi.org/10.21767/2386-5180.1000170
Apriani, E.F., Miksusanti, M.
& Fransiska, N. 2022. Formulation and
optimization peel-off gel mask with polyvinyl alcohol and gelatin based using
factorial design from banana peel flour (Musa paradisiaca L) as antioxidant. Indonesian
Journal of Pharmacy 33(2): 261-268. https://doi.org/10.22146/ijp.3408
Apriani, E.F., Mardiyanto,
M. & Hendrawan, A. 2022. Optimization of green
synthesis of silver nanoparticles from Areca catechu L. seed extract with variations of silver
nitrate and extract concentrations using simplex lattice design method. Farmacia 70(5): 917-924. https://doi.org/10.31925/farmacia.2022.5.18
Aziz,
A. & Aziz, S. 2018. Application of box behnken design to optimize the parameters for kenaf-epoxy as
noise absorber. IOP Conference Series: Materials Science and Engineering 454: 1-10. https://doi.org/10.1088/1757-899X/454/1/012001
Azmi, N.A.N., Elgharbawy, A.A.M., Motlagh, S.R., Samsudin, N.
& Salleh, H.M. 2019. Nanoemulsions:
Factory for food, pharmaceutical and cosmetics. Processes 7(617): 1-34.
https://doi.org/10.3390/pr7090617
Boateng, L., Ansong, R., Owusu, W.B. & Steiner-Asiedu,
M. 2016. Coconut oil and palm oil's role in nutrition, health and national
development: A review. Ghana Med. J. 50(3): 189-196.
Boby, J. 2013. Application of desirability function for
optimizing the performance characteristics of carbonitrided bushes. International Journal of Industrial Engineering Computations 4:
305-314. https://doi.org/10.5267/j.ijiec.2013.04.003
Cecchini, M.E., Paoloni, C., Campra, N., Picco, N., Grosso,
M.C., Soriano-Perez, M.L., Alustiza, F., Cariddi, N. & Bellingeri, R.
2021. Nanoemulsion of Minthostachys verticillata essential oil. In-vitro evaluation of its antibacterial
activity. Heliyon 7(1): e05896.
https://doi.org/10.1016/j.heliyon.2021.e05896
Chen, Y.S., Chiu, Y.H., Li, Y.S., Lin, E.Y., Hsieh,
D.K., Lee, C.H., Huang, M.H., Chuang, H.M., Lin, S.Z., Harn,
H.J. & Chiou, T.W. 2019. Integration of PEG 400
into a self-nanoemulsifying drug delivery system improves drug loading capacity
and nasal mucosa permeability and prolongs the survival of rats with malignant
brain tumors. Int. J. Nanomedicine 14:
3601-3613. https://doi.org/10.2147/IJN.S193617
Chuacharoen, T., Prasongsuk, S.
& Sabliov, C.M. 2019. Effect of surfactant
concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial
utilization. Molecules 24(2744): 1-12.
https://doi.org/10.3390/molecules24152744
Clark, S.B. & Hicks, M.A. 2022. Staphylococcal Pneumonia. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Jan-. https://www.ncbi.nlm.nih.gov/books/NBK559152/
Desbois, A.P. & Smith, V.J. 2010. Antibacterial free
fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85: 1629-1642. https://doi.org/10.1007/s00253-009-2355-3
Feßler, A.T., Li, J., Kadlec, K., Wang, Y. & Schwarz, S. 2008. Chapter
4 - Antimicrobial resistance properties of Staphylococcus
aureus. In Staphylococcus aureus,
edited by Fetsch, A. Massachusetts: Academic Press.
pp. 57-85. https://doi.org/10.1016/B978-0-12-809671-0.00004-8.
Figueiredo, D., Junior, S. & Rocha, E. 2011. What is R2
all about? Leviathan-Cadernos de Pesquisa Polútica 3: 60-68.
https://doi.org/10.11606/issn.2237-4485.lev.2011.132282
Fischer, C.L., Drake, D.R., Dawson, D.V., Blanchette, D.R., Brogden, K.A.
& Wertz, P.W. 2012. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and
Gram-negative bacteria. Antimicrob Agents Chemother. 56(3): 1157-1161. https://doi.org/10.1128/AAC.05151-11
Gupta, A., Eral, H.B., Hatton, T.A. & Doyle, P.S. 2016. Nanoemulsions: Formation, properties and applications. Soft
Matter. 12: 2826-2841. https://doi.org/10.1039/C5SM02958A
Hasani, F., Pezeshki, A. & Hamishehkar, H. 2015. Effect of surfactant and oil
type on size droplets of betacarotene-bearing nanoemulsions. Int. J. Curr. Microbiol. App. Sci. 4: 146-155.
Homayoonfal, M., Khodaiyan, F.
& Mousavi, S.M. 2014. Walnut oil nanoemulsion:
Optimization of the emulsion capacity, cloudiness, density, and surface
tension. Journal of Dispersion Science and Technology 35(5): 725-733.
https://doi.org/10.1080/01932691.2013.807742
Huang, C.B., George, B. & Ebersole,
J.L. 2010. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their
esters for oral microorganisms. Arch. Oral Biol. 55(8): 555-560.
https://doi.org/10.1016/j.archoralbio.2010.05.009
Kayili, E. & Sanlibaba, P. 2020. Prevalence,
characterization and antibiotic resistance of Staphylococcus aureus isolated from traditional cheeses in
Turkey. International Journal of Food
Properties 23(1): 10.1080/10942912.2020.1814323
Kenechukwu, O., Chukwuemeka, O.,
Joy, I. & Edwin, E. 2022. Effect of virgin coconut oil, lauric acid and myristic acid on serum and prostatic markers
of benign prostatic hyperplasia. Tropical Journal of Pharmaceutical Research 21: 809-815. https://doi.org/10.4314/tjpr.v21i4.18
Kotta, S., Khan, A.W., Ansari, S.H., Sharma, R.K. &
Ali, J. 2015. Formulation of nanoemulsion: A
comparison between phase inversion composition method and high-pressure
homogenization method. Drug Delivery 22(4): 455-466.
https://doi.org/10.3109/10717544.2013.866992
Kumar, S., Singh, S., Kumar, V., Datta, S., Sharma, P. & Singh, J. 2020. Pathogenesis
and antibiotic resistance of Staphylococcus
aureus. In Model Organisms for
Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery,
edited by Siddhardha, B., Dyavaiah,
M. & Syed, A. Singapore: Springer. pp. 99-115. https://doi.org/10.1007/978-981-15-1695-5_7
Laxmi, M., Bhardwaj, A., Mehta, S. & Mehta, A. 2015.
Development and characterization of nanoemulsion as
carrier for the enhancement of bioavailability of artemether. Artificial Cells, Nanomedicine, and Biotechnology 43(5): 334-344. https://doi.org/10.3109/21691401.2014.887018
Liu, Q., Huang, H., Chen, H., Lin, J. & Wang, Q.
2019. Food-grade nanoemulsions: Preparation,
stability and application in encapsulation of bioactive compounds. Molecules 24(23): 4242. https://doi.org/10.3390/molecules24234242
Lu,
H. & Tan, P.P. 2009. A comparative study of storage stability in virgin coconut oil and extra
virgin olive oil upon thermal treatment. International Food Research Journal 16: 343-354.
Man, G., Elias, P.M. & Man, M.Q. 2015. Therapeutic
benefits of enhancing permeability barrier for atopic eczema. Dermatologica Sinica 33(2): 84-89. https://doi.org/10.1016/j.dsi.2015.03.006
Matsue, M., Mori, Y., Nagase, S., Sugiyama, Y.,
Hirano, R., Ogai, K., Ogura, K., Kurihara,
S. & Okamoto, S. 2019. Measuring the antimicrobial activity of lauric acid against various bacteria in human gut
microbiota using a new method. Cell Transplant 28(12): 1528-1541.
https://doi.org/ 10.1177/0963689719881366
Mardiyanto, M., Apriani, E.F. & Alfarizi, M.H. 2022. Formulation and in-vitro antibacterial activity of gel containing ethanolic extract of purple sweet potato leaves (Ipomoea batatas (L.) loaded poly lactic co-glycolic acid submicroparticles against Staphylococcus aureus. Research
Journal of Pharmacy and Technology 15(8): 3599-5.
https://doi.org/10.52711/0974-360X.2022.00603
Moghimi, R., Aliahmadi, A., McClements, D.J. & Rafati, H.
2016. Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT -
Food Science and Technology 71: 69-76. https://doi.org/10.1016/j.lwt.2016.03.018
Nakatsuji, T., Kao, M., Fang, J.Y., Zouboulis,
C., Zhang, L., Gallo, R. & Huang, C.M. 2009. Antimicrobial property of lauric acid against Propionibacterium acnes: Its therapeutic potential for inflammatory acne vulgaris. The
Journal of Investigative Dermatology 129: 2480-2488.
https://doi.org/10.1038/jid.2009.93
Nielsen, C.K., Kjems, J., Mygind, T., Snabe, T. &
Meyer, R.L. 2016. Effects of Tween 80 on growth and biofilm formation in
laboratory media. Front. Microbiol. 7(1878):
1-10. https://doi.org/10.3389/fmicb.2016.01878
Noordin, M.Y., Venkatesh, V.C.,
Sharif, S., Elting, S. & Abdullah, A. 2004.
Application of response surface methodology in describing the performance of
coated carbide tools when turning AISI 1045 steel. Journal of Materials
Processing Technology 15(1): 46-58. https://doi.org/10.1016/S0924-0136(03)00861-6
Nurhidayah, E., Agustin, A., Indawati,
I., Zamzam, M.Y. & Nabila, S.P. 2022. The characteristics of virgin coconut oil made in oil
fishing method and gradual heating. Jurnal Kesehatan Muhamadiyah 3(1):
35-40. https://doi.org/10.37874/mh.v3i1.400
Parker, D. & Prince, A. 2012. Immunopathogenesis of Staphylococcus aureus pulmonary
infection. Semin Immunopathol. 34(2): 281-297. https://doi.org/10.1007/s00281-011-0291-7
Rowe,
R.C., Sheskey, P.J. & Quinn, M.E. 2009. Handbook of Pharmaceutical Excipients. 6th ed. London: Pharmaceutical Press.
Rukmini,
A. & Raharjo, S. 2010. Pattern of peroxide value
changes in virgin coconut oil (VCO) due to photo-oxidation sensitized by
chlorophyll. Journal of the American Oil Chemists' Society 87:
1407-1412. https://doi.org/10.1007/s11746-010-1641-7
Sarheed, O., Dibi, M. & Ramesh,
K.V.R.N.S. 2020. Studies on the effect of oil and surfactant on the formation
of alginate-based O/W lidocaine nanocarriers using nanoemulsion template. Pharmaceutics 12(12): 1223. https://doi.org/10.3390/pharmaceutics12121223
Shehata, T.M., Almostafa, M.M.
& Elsewedy, H.S. 2022. Development and
optimization of Nigella sativa nanoemulsion loaded with pioglitazone for hypoglycemic effect. Polymers 14: 3021. https://doi.org/10.3390/polym14153021
Sivakanthan, S., Bopitiya, D.
& Madhujith, T. 2018. A comparative study on
stability of different types of coconut (Cocos nucifera) oil against autoxidation and
photo-oxidation. African Journal of Food Science 12(9): 216-229.
https://doi.org/10.5897/AJFS2018.1695
Su’i, M., Sumaryati, E., Prasetyo, R. & Eric, P. 2015. Anti-bacteria activities
of lauric acid from coconut endosperm (Hydolysed using lipase Endogeneus). Advance in Environmental Biology 9(23): 45-49.
Suryani, S., Sariani, S.,
Earnestly, F., Marganof, M., Rahmawati,
R., Sevindrajuta, S., Mahlia,
T.M.I. & Fudholi, A. 2020. A comparative study of
virgin coconut oil, coconut oil and palm oil in terms of their active
ingredients. Processes 8(402): 1-11. https://doi.org/10.3390/pr8040402
Standar Nasional Indonesia. 2008. SNI 7381:2008 Virgin Coconut Oil. Jakarta: Badan Standardisasi Nasional. pp. 1-36.
Thakkar,
H., Nangesh, J., Parmar, M.
& Patel, D. 2011. Formulation and characterization of lipid-based drug
delivery system of raloxifene microemulsion and self-microemulsifying drug delivery system. J.
Pharm. Bioallied. Sci. 3(3): 442-448.
https://doi.org/10.4103/0975-7406.84463
Tong, S.Y., Davis, J.S., Eichenberger,
E., Holland, T.L. & Fowler Jr., V.G. 2015. Staphylococcus aureus infections: Epidemiology, pathophysiology,
clinical manifestations, and management. Clin. Microbiol. Rev. 28(3): 603-661.
https://doi.org/10.1128/CMR.00134-14
Ujilestari, T., Dono, N., Ariyadi, B., Martien, R. & Zuprizal, Z. 2018. Formulation and characterization of
self-nano emulsifying drug delivery systems of
lemongrass (Cymbopogon citratus)
essential oil. Malaysian Journal of Fundamental and Applied Sciences 14:
360-363. https://doi.org/10.11113/mjfas.v14n3.1070
Wu, H.R., Wang, C.Q., Wang, J.X., Chen, J.F. & Le,
Y. 2020. Engineering of long-term stable transparent nanoemulsion using high-gravity rotating packed bed for oral drug delivery. Int. J. Nanomedicine 15: 2391-2402. https://doi.org/10.2147/IJN.S238788
*Pengarang untuk surat-menyurat; email: elsafitria@mipa.unscri.ac.id
|