Sains Malaysiana 52(4)(2023): 1259-1272

http://doi.org/10.17576/jsm-2023-5204-17

 

Optimization of Tween 80 and PEG-400 Concentration in Indonesian Virgin Coconut Oil Nanoemulsion as Antibacterial against Staphylococcus aureus

(Pengoptimuman Kepekatan Tween 80 dan PEG-400 dalam Nanoemulsi Minyak Kelapa Dara Indonesia sebagai Antibakteria terhadap Staphylococcus aureus)

 

MIKSUSANTI1, ELSA FITRIA APRIANI2,* & AZZAHRA HITHTHAH BAMA BIHURININ2

 

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South Sumatra, Indonesia

2Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South Sumatra, Indonesia

 

Diserahkan: 25 Oktober 2022/Diterima: 6 Mac 2023

 

Abstract

Virgin Coconut Oil (VCO) can act as an antibacterial due to free fatty acids. To increase the stability of VCO, the VCO can be formed into nanoemulsion preparations. This study aimed to optimize the concentration of Tween 80 and Polyethylene glycol-400 (PEG-400) in nanoemulsion formula and determine antibacterial activity against Staphylococcus aureus. The content of VCO was determined using Gas Chromatography-Mass Spectrometry (GC-MS), and the results showed that VCO contained lauric acid, palmitic acid, caprylic acid, oleic acid, capric acid, and stearic acid. Optimization was carried out using the 22 factorial design method on the response of pH, density, percent transmittance, particle size, and polydispersity index. The optimum formula was obtained at concentrations of Tween 80 and PEG-400 40% and 26%, respectively, with a desirability value of 0.961. The optimum formula showed no phase separation and a significant decrease in pH (p>0.05). The optimum and comparison formula (pure VCO) had significantly different antibacterial activity (p<0.05) where the diameter of the inhibition zone was 24.77±1.66 mm and 16.73±2.00 mm, Minimum Inhibitory Concentration (MIC) of 1250 ppm and 2500 ppm, Minimum Bactericidal Concentration (MBC) of 2500 ppm and more than 2500 ppm, respectively. The optimum formula of VCO nanoemulsion was proven to have good stability and a potent antibacterial activity.

 

Keywords: Antibacterial; factorial design; nanoemulsion; Staphylococcus aureus; virgin coconut oil

 

Abstrak

Minyak Kelapa Dara (VCO) boleh bertindak sebagai antibakteria kerana kandungan asid lemak bebas. Bagi meningkatkan kestabilan VCO, ia boleh disediakan dalam bentuk nano-emulsi. Tujuan kajian ini dijalankan adalah untuk mendapatkan kepekatan yang optimum bagi Tween 80 dan Polietilena glikol-400 (PEG-400) di dalam formulasi nano-emulsi dan untuk menentukan aktiviti antibakteria terhadap Staphylococcus aureus. Kandungan VCO telah dianalisis dengan menggunakan Kromatografi gas–spektrometri jisim (GC-MS) dan hasilnya menunjukkan VCO mengandungi asid laurik, asid palmitik, asid kaprilat, asid oleik, asid kaprik dan asid stearik. Pengoptimuman telah dijalankan menggunakan kaedah reka bentuk faktorial 22 pada tindak balas pH, ketumpatan, peratus transmisi, saiz zarah dan indeks polidispersiti. Formula optimum didapati pada kepekatan Tween 80 dan PEG-400 masing-masing 40% dan 26%, dengan nilai kemahuan 0.961. Formula optimum juga menunjukkan tiada pemisahan campuran mahupun penurunan pH yang ketara (p>0.05). Formula optimum dan perbandingannya (VCO tulen) didapati mempunyai aktiviti antibakteria yang berbeza secara signifikan (p<0.05) dengan diameter zon inhibasi masing-masing ialah 24.77±1.66 mm dan 16.73±2.00 mm, Kepekatan Perencatan Minimum (MIC) 1250 ppm dan 2500 ppm dan Kepekatan Bakteria Minimum (MBC) 2500 ppm dan lebih daripada 2500 ppm. Formula optimum nano-emulsi VCO terbukti mempunyai kestabilan yang baik dan aktiviti antibakteria yang tinggi.

 

Kata kunci: Antibakteria; minyak kelapa dara; nano-emulsi; reka bentuk faktor; Staphylococcus aureus

 

RUJUKAN

Abllah, Z. & Shahdan, I. 2018. Virgin coconut oil and its antimicrobial properties against pathogenic microorganisms: A review. Journal of Research in Health Sciences 8: 192-199. https://doi.org/10.2991/IDCSU-17.2018.51

Agarwal, R. 2017. Extraction processes of virgin coconut oil. Food Processing & Technology 4: 1-3. https://doi.org/10.15406/mojfpt.2017.04.00087

Álvarez-Chimal, R., García-Pérez, V.I., Álvarez-Pérez, M.A., Tavera-Hernández, R., Reyes-Carmona, L., Martínez-Hernández, K. & Arenas-Alatorre, J.A. 2022. Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using Dysphania ambrosioides extract, supported by molecular docking analysis. Arabian Journal of Chemistry 15(6): 10384. https://doi.org/10.1016/j.arabjc.2022.103804

Anzaku, A.A., Akyala, A., Adeola, J. & Ewenighi, C. 2017. Antibacterial activity of lauric acid on some selected clinical isolates. Annals of Clinical and Laboratory Research 5: 1-5. https://doi.org/10.21767/2386-5180.1000170

Apriani, E.F., Miksusanti, M. & Fransiska, N. 2022. Formulation and optimization peel-off gel mask with polyvinyl alcohol and gelatin based using factorial design from banana peel flour (Musa paradisiaca L) as antioxidant. Indonesian Journal of Pharmacy 33(2): 261-268. https://doi.org/10.22146/ijp.3408

Apriani, E.F., Mardiyanto, M. & Hendrawan, A. 2022. Optimization of green synthesis of silver nanoparticles from Areca catechu L. seed extract with variations of silver nitrate and extract concentrations using simplex lattice design method. Farmacia 70(5): 917-924. https://doi.org/10.31925/farmacia.2022.5.18

Aziz, A. & Aziz, S. 2018. Application of box behnken design to optimize the parameters for kenaf-epoxy as noise absorber. IOP Conference Series: Materials Science and Engineering 454: 1-10. https://doi.org/10.1088/1757-899X/454/1/012001

Azmi, N.A.N., Elgharbawy, A.A.M., Motlagh, S.R., Samsudin, N. & Salleh, H.M. 2019. Nanoemulsions: Factory for food, pharmaceutical and cosmetics. Processes 7(617): 1-34. https://doi.org/10.3390/pr7090617

Boateng, L., Ansong, R., Owusu, W.B. & Steiner-Asiedu, M. 2016. Coconut oil and palm oil's role in nutrition, health and national development: A review. Ghana Med. J. 50(3): 189-196.

Boby, J. 2013. Application of desirability function for optimizing the performance characteristics of carbonitrided bushes. International Journal of Industrial Engineering Computations 4: 305-314. https://doi.org/10.5267/j.ijiec.2013.04.003

Cecchini, M.E., Paoloni, C., Campra, N., Picco, N., Grosso, M.C., Soriano-Perez, M.L., Alustiza, F., Cariddi, N. & Bellingeri, R. 2021. Nanoemulsion of Minthostachys verticillata essential oil. In-vitro evaluation of its antibacterial activity. Heliyon 7(1): e05896. https://doi.org/10.1016/j.heliyon.2021.e05896

Chen, Y.S., Chiu, Y.H., Li, Y.S., Lin, E.Y., Hsieh, D.K., Lee, C.H., Huang, M.H., Chuang, H.M., Lin, S.Z., Harn, H.J. & Chiou, T.W. 2019. Integration of PEG 400 into a self-nanoemulsifying drug delivery system improves drug loading capacity and nasal mucosa permeability and prolongs the survival of rats with malignant brain tumors. Int. J. Nanomedicine 14: 3601-3613. https://doi.org/10.2147/IJN.S193617

Chuacharoen, T., Prasongsuk, S. & Sabliov, C.M. 2019. Effect of surfactant concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial utilization. Molecules 24(2744): 1-12. https://doi.org/10.3390/molecules24152744

Clark, S.B. & Hicks, M.A. 2022. Staphylococcal Pneumonia. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Jan-. https://www.ncbi.nlm.nih.gov/books/NBK559152/

Desbois, A.P. & Smith, V.J. 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol85: 1629-1642. https://doi.org/10.1007/s00253-009-2355-3

Feßler, A.T., Li, J., Kadlec, K., Wang, Y. & Schwarz, S. 2008. Chapter 4 - Antimicrobial resistance properties of Staphylococcus aureus. In Staphylococcus aureus, edited by Fetsch, A. Massachusetts: Academic Press. pp. 57-85. https://doi.org/10.1016/B978-0-12-809671-0.00004-8.

Figueiredo, D., Junior, S. & Rocha, E. 2011. What is R2 all about? Leviathan-Cadernos de Pesquisa Polútica 3: 60-68. https://doi.org/10.11606/issn.2237-4485.lev.2011.132282

Fischer, C.L., Drake, D.R., Dawson, D.V., Blanchette, D.R., Brogden, K.A. & Wertz, P.W. 2012. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteriaAntimicrob Agents Chemother. 56(3): 1157-1161. https://doi.org/10.1128/AAC.05151-11

Gupta, A., Eral, H.B., Hatton, T.A. & Doyle, P.S. 2016. Nanoemulsions: Formation, properties and applications. Soft Matter. 12: 2826-2841. https://doi.org/10.1039/C5SM02958A

Hasani, F., Pezeshki, A. & Hamishehkar, H. 2015. Effect of surfactant and oil type on size droplets of betacarotene-bearing nanoemulsions. Int. J. Curr. Microbiol. App. Sci. 4: 146-155.

Homayoonfal, M., Khodaiyan, F. & Mousavi, S.M. 2014. Walnut oil nanoemulsion: Optimization of the emulsion capacity, cloudiness, density, and surface tension. Journal of Dispersion Science and Technology 35(5): 725-733. https://doi.org/10.1080/01932691.2013.807742

Huang, C.B., George, B. & Ebersole, J.L. 2010. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch. Oral Biol. 55(8): 555-560. https://doi.org/10.1016/j.archoralbio.2010.05.009

Kayili, E. & Sanlibaba, P. 2020. Prevalence, characterization and antibiotic resistance of Staphylococcus aureus isolated from traditional cheeses in Turkey. International Journal of Food Properties 23(1): 1441-1451. https://doi.org/10.1080/10942912.2020.1814323

Kenechukwu, O., Chukwuemeka, O., Joy, I. & Edwin, E. 2022. Effect of virgin coconut oil, lauric acid and myristic acid on serum and prostatic markers of benign prostatic hyperplasia. Tropical Journal of Pharmaceutical Research 21: 809-815. https://doi.org/10.4314/tjpr.v21i4.18

Kotta, S., Khan, A.W., Ansari, S.H., Sharma, R.K. & Ali, J. 2015. Formulation of nanoemulsion: A comparison between phase inversion composition method and high-pressure homogenization method. Drug Delivery 22(4): 455-466. https://doi.org/10.3109/10717544.2013.866992

Kumar, S., Singh, S., Kumar, V., Datta, S., Sharma, P. & Singh, J. 2020. Pathogenesis and antibiotic resistance of Staphylococcus aureus. In Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery, edited by Siddhardha, B., Dyavaiah, M. & Syed, A. Singapore: Springer. pp. 99-115. https://doi.org/10.1007/978-981-15-1695-5_7

Laxmi, M., Bhardwaj, A., Mehta, S. & Mehta, A. 2015. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artificial Cells, Nanomedicine, and Biotechnology 43(5): 334-344. https://doi.org/10.3109/21691401.2014.887018

Liu, Q., Huang, H., Chen, H., Lin, J. & Wang, Q. 2019. Food-grade nanoemulsions: Preparation, stability and application in encapsulation of bioactive compounds. Molecules 24(23): 4242. https://doi.org/10.3390/molecules24234242

Lu, H. & Tan, P.P. 2009. A comparative study of storage stability in virgin coconut oil and extra virgin olive oil upon thermal treatment. International Food Research Journal 16: 343-354.

Man, G., Elias, P.M. & Man, M.Q. 2015. Therapeutic benefits of enhancing permeability barrier for atopic eczema. Dermatologica Sinica 33(2): 84-89. https://doi.org/10.1016/j.dsi.2015.03.006

Matsue, M., Mori, Y., Nagase, S., Sugiyama, Y., Hirano, R., Ogai, K., Ogura, K., Kurihara, S. & Okamoto, S. 2019. Measuring the antimicrobial activity of lauric acid against various bacteria in human gut microbiota using a new method. Cell Transplant 28(12): 1528-1541. https://doi.org/ 10.1177/0963689719881366

Mardiyanto, M., Apriani, E.F. & Alfarizi, M.H. 2022. Formulation and in-vitro antibacterial activity of gel containing ethanolic extract of purple sweet potato leaves (Ipomoea batatas (L.) loaded poly lactic co-glycolic acid submicroparticles against Staphylococcus aureus. Research Journal of Pharmacy and Technology 15(8): 3599-5. https://doi.org/10.52711/0974-360X.2022.00603

Moghimi, R., Aliahmadi, A., McClements, D.J. & Rafati, H. 2016. Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT - Food Science and Technology 71: 69-76. https://doi.org/10.1016/j.lwt.2016.03.018

Nakatsuji, T., Kao, M., Fang, J.Y., Zouboulis, C., Zhang, L., Gallo, R. & Huang, C.M. 2009. Antimicrobial property of lauric acid against Propionibacterium acnes: Its therapeutic potential for inflammatory acne vulgaris. The Journal of Investigative Dermatology 129: 2480-2488. https://doi.org/10.1038/jid.2009.93

Nielsen, C.K., Kjems, J., Mygind, T., Snabe, T. & Meyer, R.L. 2016. Effects of Tween 80 on growth and biofilm formation in laboratory media. Front. Microbiol. 7(1878): 1-10. https://doi.org/10.3389/fmicb.2016.01878

Noordin, M.Y., Venkatesh, V.C., Sharif, S., Elting, S. & Abdullah, A. 2004. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. Journal of Materials Processing Technology 15(1): 46-58. https://doi.org/10.1016/S0924-0136(03)00861-6

Nurhidayah, E., Agustin, A., Indawati, I., Zamzam, M.Y. & Nabila, S.P. 2022. The characteristics of virgin coconut oil made in oil fishing method and gradual heating. Jurnal Kesehatan Muhamadiyah 3(1): 35-40. https://doi.org/10.37874/mh.v3i1.400

Parker, D. & Prince, A. 2012. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol. 34(2): 281-297. https://doi.org/10.1007/s00281-011-0291-7

Rowe, R.C., Sheskey, P.J. & Quinn, M.E. 2009. Handbook of Pharmaceutical Excipients. 6th ed. London: Pharmaceutical Press.

Rukmini, A. & Raharjo, S. 2010. Pattern of peroxide value changes in virgin coconut oil (VCO) due to photo-oxidation sensitized by chlorophyll. Journal of the American Oil Chemists' Society 87: 1407-1412. https://doi.org/10.1007/s11746-010-1641-7

Sarheed, O., Dibi, M. & Ramesh, K.V.R.N.S. 2020. Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template. Pharmaceutics 12(12): 1223. https://doi.org/10.3390/pharmaceutics12121223

Shehata, T.M., Almostafa, M.M. & Elsewedy, H.S. 2022. Development and optimization of Nigella sativa nanoemulsion loaded with pioglitazone for hypoglycemic effect. Polymers 14: 3021. https://doi.org/10.3390/polym14153021

Sivakanthan, S., Bopitiya, D. & Madhujith, T. 2018. A comparative study on stability of different types of coconut (Cocos nucifera) oil against autoxidation and photo-oxidation. African Journal of Food Science 12(9): 216-229. https://doi.org/10.5897/AJFS2018.1695

Su’i, M., Sumaryati, E., Prasetyo, R. & Eric, P. 2015. Anti-bacteria activities of lauric acid from coconut endosperm (Hydolysed using lipase Endogeneus). Advance in Environmental Biology 9(23): 45-49.

Suryani, S., Sariani, S., Earnestly, F., Marganof, M., Rahmawati, R., Sevindrajuta, S., Mahlia, T.M.I. & Fudholi, A. 2020. A comparative study of virgin coconut oil, coconut oil and palm oil in terms of their active ingredients. Processes 8(402): 1-11. https://doi.org/10.3390/pr8040402

Standar Nasional Indonesia. 2008. SNI 7381:2008 Virgin Coconut Oil. Jakarta: Badan Standardisasi Nasional. pp. 1-36.

Thakkar, H., Nangesh, J., Parmar, M. & Patel, D. 2011. Formulation and characterization of lipid-based drug delivery system of raloxifene microemulsion and self-microemulsifying drug delivery system. J. Pharm. Bioallied. Sci. 3(3): 442-448. https://doi.org/10.4103/0975-7406.84463

Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L. & Fowler Jr., V.G. 2015. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28(3): 603-661. https://doi.org/10.1128/CMR.00134-14 

Ujilestari, T., Dono, N., Ariyadi, B., Martien, R. & Zuprizal, Z. 2018. Formulation and characterization of self-nano emulsifying drug delivery systems of lemongrass (Cymbopogon citratus) essential oil. Malaysian Journal of Fundamental and Applied Sciences 14: 360-363. https://doi.org/10.11113/mjfas.v14n3.1070

Wu, H.R., Wang, C.Q., Wang, J.X., Chen, J.F. & Le, Y. 2020. Engineering of long-term stable transparent nanoemulsion using high-gravity rotating packed bed for oral drug delivery. Int. J. Nanomedicine 15: 2391-2402. https://doi.org/10.2147/IJN.S238788

 

*Pengarang untuk surat-menyurat; email: elsafitria@mipa.unscri.ac.id

 

   

sebelumnya