Sains Malaysiana 52(5)(2023): 1407-1417

http://doi.org/10.17576/jsm-2023-5205-07

 

Filem Mikrosfera Akrilik Terpegun Alizarin Merah S untuk Pengesanan Pendarfluor Optik Asid Borik 

(Alizarin Red S Immobilized Acrylic Microspheres Film for Optical Fluorescence Sensing of Boric Acid)

 

RAJA ZAIDATUL AKHMAR RAJA JAMALUDDIN1,*, MUSA AHMAD2, LEE YOOK HENG1 & LING LING TAN3

 

1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia

3Pusat Kajian Bencana Asia Tenggara (SEADPRI), Institut Alam Sekitar dan Pembangunan (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 12 Februari 2023/Diterima: 2 Mei 2023

 

Abstrak

Mikrosensor pendarfluor optik untuk kuantifikasi asid borik dalam sampel makanan telah dibangunkan berdasarkan filem mikrosfera poli(n-butil akrilat) [poli(nBA)]. Pencirian optik reagen alizarin merah S (ARS) terpegun pada filem mikrosfera poliakrilat dengan asid borik telah dilakukan melalui pendekatan transduksi pendarfluor. Reagen ARS telah dijerap secara fizikal pada filem mikrosfera akrilik hidrofobik untuk membentuk mikropolimer kelat dengan sokongan matriks sol-gel untuk mengelakkan larut lesap molekul ARS yang bersifat larut air. Pengkelat ARS yang terpegun pada filem mikrosfera poli(nBA) memberikan tindak balas pengesanan optik yang cepat dalam masa 1 minit. Julat rangsangan linear dinamik yang berguna bagi mikrosensor pendarfluor optik asid borik telah diperoleh antara 1.6 µM dan 32.0 µM asid borik dengan had pengesanan (LOD) pada 1 μM. Mikrosensor pendarfluor optik asid borik berasaskan mikropolimer akrilik menghasilkan prestasi kebolehulangan yang baik dengan nilai sisihan piawai relatif (RSD) yang dicapai dalam julat 3.3-3.6%. Mikrosensor optik yang dibangunkan telah digunakan untuk pengukuran pendarfluor asid borik dalam sampel mi kuning dan mi beras leper ('hor fun'/'kway teow') dan tidak menunjukkan perbezaan yang ketara berbanding dengan kaedah rujukan tradisional spektrometri pemancaran plasma-optik berganding secara induktif (ICP-OES).

 

Kata kunci: Alizarin Merah S; asid borik; mikrosfera akrilik; pendarfluor; sensor optik

 

Abstract

An optical microsensor for the quantification of boric acid in food samples has been developed based on poly(n-butyl acrylate) [poly(nBA)] microspheres film. Optical characterization of the immobilized alizarin red S (ARS) reagent on the polyacrylate microspheres film with boric acid has been performed via a fluorescence transduction approach. The ARS reagent was physically adsorbed on the hydrophobic acrylic microspheres film to form a chelating micropolymer with the support of a sol-gel matrix to prevent the leaching of the water-soluble ARS molecules. The immobilized ARS chelator on the poly(nBA) microspheres film afforded a quick optical sensing response within 1 min. A useful dynamic linear response range of the optical microsensor was established between 1.6 µM and 32.0 µM boric acid with a limit of detection (LOD) obtained at 1 μM. The acrylic micropolymer-based fluorescence boric acid sensor yielded promising reproducibility resullts with relative standard deviation (RSD) values attained in the range of 3.3-3.6%. The developed optical chemical microsensor has been applied for fluorescence quantitation of boric acid in yellow noodle and flat rice noodle (‘hor fun’/’kway teow’) samples, and exhibited no significant disagreement compared with traditional inductively coupled plasma-optical emission spectrometry (ICP-OES) reference method.

 

Keywords: Alizarin Red S; acrylic microspheres; boric acid; fluorescence; optical chemical sensor

 

RUJUKAN

Abbaspour, A. & Baramakeh, L. 2006. Novel zirconium optical sensor based on immobilization of Alizarin Red S on a triacetylcellulose membrane by using principle component analysis artificial neural network. Sensors & Actuators B: Chemical 114(2): 950-956.  

Al-Ammar, A.S., Gupta, R.K. & Barnes, R.M. 2000. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis. Spectrochimica Acta Part B 55: 629-635.

Amit, Z., Lasem, L.A., Muhd Hariz, L.A.R., Nur Nayli Nasuha, A.R., Nur Hazira, A.M. & Ling, J.H. 2020. Contents of boric acid in noodles and processed foods. Borneo Journal of Resource Science and Technology10(1): 70-78.

Ang, S.S., Abu Bakar, S., Fatimah, A.B., Nor Azah, Y., Ahmed Sahib, A. & Lee, Y.H. 2010. Risk and health effect of boric acid. American Journal of Applied Sciences 7: 620-627. 

Chen, S.C. & Yu, L.L. 2009. Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS. Sensors & Actuators B: Chemical 143: 205-210.

Chimpalee, N., Chimpalee, D., Boonyanitchayakul, B. & Burns, D.T. 1993. Flow-injection spectrofluorimetric determination of boron using Alizarin Red S in aqueous solution. Analytica Chimica Acta 282(3): 643-646.

Economou, A., Themelis, D.G., Bikou, H., Tzanavaras, P.D. & Rigas, P.G. 2004. Determination of boron in water and pharmaceuticals by sequential-injection analysis and fluorimetric detection. Analytical Chimica Acta 510(2): 219-224.

Fatibello-Filho, O. & Vieira, H.J. 2009. Spectrophotometric flow injection system for determination of Zn2+ in ophthalmic formulations using Alizarin Red S. Eclética Química 34: 67-72.

Homayon, A.P., Karimi, M., Moniri, E. & Soudi, H. 2008. Development of a sensitive spectrophotometeric method for determination of copper. African Journal of Pure and Applied Chemistry 2: 096-099.

Hun, X. & Zhang, Z. 2007. Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum. Microchimica Acta 159: 255-261.

Ibrahim, S. & Nuri, N. 2006. Voltammetric determination of boron by using Alizarin Red S. Analytica Chimica Acta 572: 253-258.

Krejc̆ová, A. & C̆ernohorský, T. 2003. The determination of boron in tea and coffee by ICP-AES method. Food Chemistry 82(2): 303-308.

Alkan, M., Kharun, M. & Chmilenko, F. 2003. Spectrophotometric determination of molybdenum with Alizarin Red S in the presence of poly(sulfonylpiperidinylmethylene hydroxide). Talanta 59(3): 605-611.

Mei, J., Ma, X. & Xie, J. 2019. Review on natural preservatives for extending fish shelf life. Foods 8: 890.

Musa, A. & Narayanaswamy, R. 1995. Development of an optical fibre Al(III) sensor based on immobilized chrome azurol S. Talanta 42: 1337-1344.

Nahdya, K., Lau, H.Y., Zamri, I., Lee, Y.H. & Tan, L.L. 2022. Biosensor DNA voltametrik berasaskan nanozarah emas bersalut elektrod bercetak skrin karbon untuk pengesanan DNA organisma terubahsuai genetik (GMO). Sains Malaysiana 51(10): 3285-3294.

Nemdruk, A.A. & Karalova Z.K. 1969. Analytical Chemistry of Boron, Terj. Kondor, R. Ann Arbor: Humphrey Science Publishers.

Noor Izaanin, R., Lee, Y.H. & Tan, L.L. 2022. A simple potentiometric biosensor based on carboxylesterase for the analysis of aspartame. Sains Malaysiana 51(9): 2913-2924.

Nor Azah, Y. & Musa, A. 2002. A flow cell optosensor for determination of Co(II) based on immobilised 2-(4-pyridylazo) resorcinol in chitosan membrane by using stopped flow, flow injection analysis. Sensors & Actuators B: Chemical 86: 127-133.

Nurlely, Musa, A., Lee, Y.H. & Tan, L.L. 2022. Optical enzymatic formaldehyde biosensor based on alcohol oxidase and pH-sensitive methacrylic-acrylic optode membrane. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 267: 120535.

Nurlely, Musa, A., Lee, Y.H. & Tan, L.L. 2021. Potentiometric enzyme biosensor for rapid determination of formaldehyde based on succinimide-functionalized polyacrylate ion-selective membrane. Measurement 175: 109112.

Saxena, R., Singh, A.K. & Sambi, S.S. 1994. Synthesis of a chelating polymer matrix by immobilizing Alizarin Red S on Amberlite XAD-2 and its application to the preconcentration of lead(II), cadmium(II), zinc(II) and nikel(II). Analytica Chimica Acta 295(1-2): 199-204.

Rodriguez, B.B., Bolbot, J.A. & Tothill, I.E. 2004. Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosensors and Bioelectronics 19: 1157-1167.

Safavi, A. & Bagheri, W. 2005. Design of a copper (II) optode based on immobilization of dithiozone on a triacetylcellulose membrane. Sensors & Actuators B: Chemical 107: 53-58.

Sai, R.S., Ravi, M.K., Nageswara, G.R., Anil, K.K. & Janardhana, C.A. 2007. A water-soluble fluorescent fluoride ion probe based on Alizarin Red S–Al(III) complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 66: 457-461.

Siti Nur Syazni, M.Z., Goh, C.T., Mohammad, B.K. & Tan, L.L. 2022. Bio-doped microbial nanosilica as optosensing biomaterial for visual quantitation of nitrite in cured meats. Biosensors 12: 388.

Springsteen, G. & Wang, B. 2002. A details examination of boronic acid-diol complexation. Tetrahedron 58(6): 5291-5300.

Springsteen, G. & Wang, B. 2001. Alizarin Red S as a general optical reporter for studying the binding of boronic acids with carbohydrates. Chemical Communications 17: 1608-1609.

Sridhar, A., Ponnuchamy, M., Kumar, P.S. & Kapoor, A. 2021. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: A review. Environmental Chemistry Letters 19: 1715-1735.

Szabo, A.S. & Golightly, D.W. 1995. Determination of boron in liquid nutritional foods by ICP-AES. Journal of Food Composition and Analysis 8: 220-231.

Takahashi, T., Yawata, S. & Hoshino, H. 2008. Determination of boron in water samples at nanogrARS per cubic decimeter levels by reversed-phase partition high-performance liquid chromatography with precolumn complexation re,action using salicylaldehyde and 1-amino-8-naphthol-3,6-disulfonate. Analytical and Bioanalytical Chemistry 391: 1101-1106.

Xu, C., Wygladacz, K., Qina, Y., Retter, R., Bell, M. & Bakker, E. 2005. Microsphere optical ion sensors based on doped silica gel templates. Analytica Chimica Acta 537(1-2): 135-143.

Xu, S.Y., Tu, G.L., Peng, B. & Han, X.Z. 2006. Self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres for fabrication of a mediatorless biosensor. Analytica Chimica Acta 570: 151-157.

Zaggout, F.R., A. Qarraman, A.El-F. & Zourab, S.M. 2007. Behavior of immobilized Alizarin Red S into sol–gel matrix as pH sensor. Materials Letters 61(19-20): 4192-4195.

Zare-Dorabei, R., Norouzi, P. & Ganjali, M.R. 2009. Design of a novel optical sensor for determination of trace gadolimium. Journal of Hazardous Materials 171: 601-605.

 

*Pengarang untuk surat-menyurat; email: anne2282@yahoo.com

 

   

sebelumnya