Sains Malaysiana
52(5)(2023):
1407-1417
http://doi.org/10.17576/jsm-2023-5205-07
Filem Mikrosfera Akrilik Terpegun Alizarin Merah S untuk
Pengesanan Pendarfluor Optik Asid Borik
(Alizarin Red S Immobilized Acrylic Microspheres Film for
Optical Fluorescence Sensing of Boric Acid)
RAJA ZAIDATUL AKHMAR RAJA JAMALUDDIN1,*,
MUSA AHMAD2, LEE YOOK HENG1 & LING LING TAN3
1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Fakulti Sains dan Teknologi, Universiti Sains Islam
Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Darul Khusus,
Malaysia
3Pusat Kajian Bencana Asia Tenggara (SEADPRI), Institut Alam
Sekitar dan Pembangunan (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 12 Februari 2023/Diterima:
2 Mei 2023
Abstrak
Mikrosensor pendarfluor
optik untuk kuantifikasi asid borik dalam
sampel makanan telah dibangunkan berdasarkan filem mikrosfera poli(n-butil akrilat) [poli(nBA)]. Pencirian optik reagen alizarin
merah S (ARS) terpegun pada filem mikrosfera poliakrilat dengan asid borik
telah dilakukan melalui pendekatan transduksi pendarfluor. Reagen ARS telah
dijerap secara fizikal pada filem mikrosfera akrilik hidrofobik untuk membentuk
mikropolimer kelat dengan sokongan matriks sol-gel untuk mengelakkan larut
lesap molekul ARS yang bersifat larut air. Pengkelat ARS yang terpegun pada
filem mikrosfera poli(nBA) memberikan
tindak balas pengesanan optik yang cepat dalam masa 1 minit. Julat rangsangan
linear dinamik yang berguna bagi mikrosensor
pendarfluor optik asid borik telah diperoleh antara 1.6 µM dan 32.0 µM asid
borik dengan had pengesanan (LOD) pada 1 μM. Mikrosensor pendarfluor optik
asid borik berasaskan mikropolimer akrilik menghasilkan prestasi
kebolehulangan yang baik dengan nilai sisihan piawai relatif (RSD) yang dicapai
dalam julat 3.3-3.6%. Mikrosensor optik yang
dibangunkan telah digunakan untuk pengukuran pendarfluor asid borik dalam
sampel mi kuning dan mi beras leper ('hor fun'/'kway teow') dan tidak
menunjukkan perbezaan yang ketara berbanding dengan kaedah rujukan tradisional
spektrometri pemancaran plasma-optik berganding secara induktif (ICP-OES).
Kata kunci: Alizarin Merah S; asid borik;
mikrosfera akrilik; pendarfluor; sensor optik
Abstract
An
optical microsensor for the quantification of boric acid in food samples has
been developed based on poly(n-butyl
acrylate) [poly(nBA)] microspheres
film. Optical characterization of the immobilized alizarin red S (ARS) reagent
on the polyacrylate microspheres film with boric acid has been performed via a
fluorescence transduction approach. The ARS reagent was physically adsorbed on
the hydrophobic acrylic microspheres film to form a chelating micropolymer with
the support of a sol-gel matrix to prevent the leaching of the water-soluble
ARS molecules. The immobilized ARS chelator on the poly(nBA) microspheres film afforded a quick optical sensing response
within 1 min. A useful dynamic linear response range of the optical microsensor
was established between 1.6 µM and 32.0 µM boric acid with a limit of detection
(LOD) obtained at 1 μM. The acrylic micropolymer-based fluorescence boric
acid sensor yielded promising reproducibility resullts with relative standard
deviation (RSD) values attained in the range of 3.3-3.6%. The developed optical
chemical microsensor has been applied for fluorescence quantitation of boric
acid in yellow noodle and flat rice noodle (‘hor fun’/’kway
teow’) samples, and exhibited no significant disagreement compared with
traditional inductively coupled plasma-optical emission spectrometry (ICP-OES)
reference method.
Keywords: Alizarin
Red S; acrylic microspheres; boric acid; fluorescence; optical chemical sensor
RUJUKAN
Abbaspour,
A. & Baramakeh, L. 2006. Novel zirconium optical sensor based on
immobilization of Alizarin Red S on a triacetylcellulose membrane by using
principle component analysis artificial neural network. Sensors & Actuators B: Chemical 114(2):
950-956.
Al-Ammar, A.S., Gupta, R.K. &
Barnes, R.M. 2000. Elimination of boron memory effect in inductively coupled
plasma-mass spectrometry by ammonia gas injection into the spray chamber during
analysis. Spectrochimica Acta Part B 55: 629-635.
Amit, Z., Lasem, L.A., Muhd Hariz,
L.A.R., Nur Nayli Nasuha, A.R., Nur Hazira, A.M. & Ling, J.H. 2020.
Contents of boric acid in noodles and processed foods. Borneo Journal of Resource Science and Technology10(1):
70-78.
Ang, S.S., Abu Bakar, S., Fatimah,
A.B., Nor Azah, Y., Ahmed Sahib, A. & Lee, Y.H. 2010. Risk and health
effect of boric acid. American Journal of
Applied Sciences 7: 620-627.
Chen, S.C. & Yu, L.L. 2009. Highly sensitive and linear
optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica
particles and HPTS. Sensors &
Actuators B: Chemical 143: 205-210.
Chimpalee, N., Chimpalee, D.,
Boonyanitchayakul, B. & Burns, D.T. 1993. Flow-injection
spectrofluorimetric determination of boron using Alizarin Red S in aqueous
solution. Analytica Chimica Acta 282(3): 643-646.
Economou, A., Themelis, D.G., Bikou,
H., Tzanavaras, P.D. & Rigas, P.G. 2004. Determination of boron in water
and pharmaceuticals by sequential-injection analysis and fluorimetric
detection. Analytical Chimica Acta 510(2): 219-224.
Fatibello-Filho, O. & Vieira,
H.J. 2009. Spectrophotometric flow injection system for determination of Zn2+ in ophthalmic formulations using Alizarin Red S. Eclética Química 34: 67-72.
Homayon, A.P., Karimi, M., Moniri,
E. & Soudi, H. 2008. Development of a sensitive spectrophotometeric method
for determination of copper. African
Journal of Pure and Applied Chemistry 2: 096-099.
Hun, X. & Zhang, Z. 2007.
Preparation of a novel fluorescence nanosensor based on calcein-doped silica
nanoparticles, and its application to the determination of calcium in blood
serum. Microchimica Acta 159:
255-261.
Ibrahim, S. & Nuri, N. 2006.
Voltammetric determination of boron by using Alizarin Red S. Analytica Chimica Acta 572: 253-258.
Krejc̆ová, A. &
C̆ernohorský, T. 2003. The determination of boron in tea and coffee by
ICP-AES method. Food Chemistry 82(2):
303-308.
Alkan, M., Kharun, M. &
Chmilenko, F. 2003. Spectrophotometric determination of molybdenum with
Alizarin Red S in the presence of poly(sulfonylpiperidinylmethylene hydroxide). Talanta 59(3): 605-611.
Mei, J., Ma, X. & Xie, J. 2019.
Review on natural preservatives for extending fish shelf life. Foods 8: 890.
Musa, A. & Narayanaswamy, R.
1995. Development of an optical fibre Al(III) sensor based on immobilized
chrome azurol S. Talanta 42:
1337-1344.
Nahdya, K., Lau, H.Y., Zamri, I.,
Lee, Y.H. & Tan, L.L. 2022. Biosensor DNA voltametrik berasaskan nanozarah
emas bersalut elektrod bercetak skrin karbon untuk pengesanan DNA organisma
terubahsuai genetik (GMO). Sains
Malaysiana 51(10): 3285-3294.
Nemdruk, A.A. & Karalova Z.K.
1969. Analytical Chemistry of Boron,
Terj. Kondor, R. Ann Arbor: Humphrey Science Publishers.
Noor Izaanin, R., Lee, Y.H. &
Tan, L.L. 2022. A simple potentiometric biosensor based on carboxylesterase for
the analysis of aspartame. Sains
Malaysiana 51(9): 2913-2924.
Nor
Azah, Y. & Musa, A. 2002. A flow cell optosensor for determination of
Co(II) based on immobilised 2-(4-pyridylazo) resorcinol in chitosan membrane by
using stopped flow, flow injection analysis. Sensors & Actuators B: Chemical 86: 127-133.
Nurlely,
Musa, A., Lee, Y.H. & Tan, L.L. 2022. Optical enzymatic formaldehyde
biosensor based on alcohol oxidase and pH-sensitive methacrylic-acrylic optode
membrane. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy 267: 120535.
Nurlely, Musa, A., Lee, Y.H. &
Tan, L.L. 2021. Potentiometric
enzyme biosensor for rapid determination of formaldehyde based on
succinimide-functionalized polyacrylate ion-selective membrane. Measurement 175: 109112.
Saxena, R., Singh, A.K. & Sambi,
S.S. 1994. Synthesis of a chelating polymer matrix by immobilizing Alizarin Red
S on Amberlite XAD-2 and its application to the preconcentration of lead(II),
cadmium(II), zinc(II) and nikel(II). Analytica
Chimica Acta 295(1-2): 199-204.
Rodriguez, B.B., Bolbot, J.A. &
Tothill, I.E. 2004. Development of urease and glutamic dehydrogenase
amperometric assay for heavy metals screening in polluted samples. Biosensors and Bioelectronics 19:
1157-1167.
Safavi, A. & Bagheri, W. 2005.
Design of a copper (II) optode based on immobilization of dithiozone on a
triacetylcellulose membrane. Sensors
& Actuators B: Chemical 107: 53-58.
Sai, R.S., Ravi, M.K., Nageswara,
G.R., Anil, K.K. & Janardhana, C.A. 2007. A water-soluble fluorescent
fluoride ion probe based on Alizarin Red S–Al(III) complex. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 66: 457-461.
Siti
Nur Syazni, M.Z., Goh, C.T., Mohammad, B.K. & Tan, L.L. 2022. Bio-doped
microbial nanosilica as optosensing biomaterial for visual quantitation of
nitrite in cured meats. Biosensors 12:
388.
Springsteen, G. & Wang, B. 2002.
A details examination of boronic acid-diol complexation. Tetrahedron 58(6): 5291-5300.
Springsteen, G. & Wang, B. 2001.
Alizarin Red S as a general optical reporter for studying the binding of
boronic acids with carbohydrates. Chemical
Communications 17: 1608-1609.
Sridhar, A., Ponnuchamy, M., Kumar,
P.S. & Kapoor, A. 2021. Food preservation techniques and nanotechnology for
increased shelf life of fruits, vegetables, beverages and spices: A review. Environmental Chemistry Letters 19:
1715-1735.
Szabo, A.S. & Golightly, D.W. 1995. Determination of boron in liquid nutritional foods by ICP-AES. Journal of Food Composition and Analysis 8: 220-231.
Takahashi, T., Yawata, S. &
Hoshino, H. 2008. Determination of boron in water samples at nanogrARS per
cubic decimeter levels by reversed-phase partition high-performance liquid
chromatography with precolumn complexation re,action using salicylaldehyde and
1-amino-8-naphthol-3,6-disulfonate. Analytical
and Bioanalytical Chemistry 391: 1101-1106.
Xu, C., Wygladacz, K., Qina, Y.,
Retter, R., Bell, M. & Bakker, E. 2005. Microsphere optical ion sensors
based on doped silica gel templates. Analytica
Chimica Acta 537(1-2): 135-143.
Xu, S.Y., Tu, G.L., Peng, B. &
Han, X.Z. 2006. Self-assembling gold nanoparticles on thiol-functionalized
poly(styrene-co-acrylic acid) nanospheres for fabrication of a mediatorless
biosensor. Analytica Chimica Acta 570: 151-157.
Zaggout, F.R., A. Qarraman, A.El-F.
& Zourab, S.M. 2007. Behavior of immobilized Alizarin Red S into sol–gel
matrix as pH sensor. Materials Letters 61(19-20): 4192-4195.
Zare-Dorabei, R., Norouzi, P. &
Ganjali, M.R. 2009. Design of a novel optical sensor for determination of trace
gadolimium. Journal of Hazardous
Materials 171: 601-605.
*Pengarang
untuk surat-menyurat; email: anne2282@yahoo.com
|