Malaysian Journal of Analytical Sciences Vol 19 no 6 (2015): 1205 - 1217

 

 

 

THIENOTHIOPHENE UNITS PROPERTIES ON THE CARBAZOLE-BASED POLYMERS FOR ORGANIC SOLAR CELL DEVICES

 

(Pencirian Unit Tienotiofen Dalam Polimer Berasaskan Karbazol Untuk Penggunaan  

Sel Solar Organik)

 

Mohd Sani Sarjadi1*, Hunan Yi2, Ahmed Iraqi2, David G. Lidzey3

 

1Faculty of Science and Natural Resources,

Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

2Department of Chemistry,

University of Sheffield, Sheffield S3 7HF, UK

3Department of Physics & Astronomy,

University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK

 

*Corresponding author: msani@ums.edu.my

 

 

Received: 9 December 2014; Accepted: 16 October 2015

 

 

Abstract

The development of new polymers-based for application in plastic solar cells is attracting much research interest for their potential as a low-cost system for renewable energy generation. We report herewith a comparative study on three donor-acceptor carbazole-based copolymers containing thienothiophene moieties for application in organic photovoltaic (OPV) devices. The polymers were synthesised by Suzuki cross coupling, in order to investigate its suitability to enhance the polymer properties in photovoltaic cell. Morphological, spectroscopic and charge-transport measurements are used to investigate the influence of either the thienothiophene moieties on the structure and photophysical properties of the copolymer rationalise the solar cell characteristics. The optical band gap, Eg of polymers P1, P2 and P3 were 2.46 eV, 2.36 eV and 2.47 eV respectively. The photophysical properties of these polymers show that P2 has the narrowest optical band gap due to the electrostatic interaction between the hydrogens at the 4-position on thienothiophene rings and the fluorine substituents on the neighbouring carbazole repeat units. These results are in agreement with the design procedures for the use of these materials in photovoltaic applications. We tentatively explain such differences on the basis of reduced molar absorbance and reduced charge-carrier mobility in the thienothiophene-based polymers.

 

Keywords: conjugated polymers, thienothiophene, Suzuki cross coupling, solar cells

 

Abstrak

Pembangunan penggunaan polimer-berasaskan sel solar plastik baru menjadi tumpuan ramai penyelidik yang berminat kepada potensi sistem murah untuk generasi yang menperbaharui tenaga. Kami melaporkan kajian tiga ko-polimer penderma-penerima berasaskan-karbazol yang mengandungi tienotiofen untuk digunakan dalam sel fotovoltac organic (OPV). Polimer disintesis dengan kaedah pengganding silang Suzuki dengan kajian kesesuaiannya meningkatkan ciri-ciri polimer sel fotovoltac. Sifat morfologi, spektroskopik dan ukuran perpindahan-cas digunakan untuk mengkaji pengaruh persekitaran struktur tienotiofen dan sifat fotofizikal bagi kopolimer untuk mengetahui kesesuaian ciri-ciri bagi sel solar. Nilai jurang tenaga optikal, Eg bagi polimer P1, P2 dan P3 masing-masing adalah 2.46 eV, 2.36 eV dan 2.47 eV. Sifat fotofizikal P2 menunjukkan nilai jurang tenaga optikal paling dekat kerana interaksi elektrostatik di antara hidrogen kedudukan-4 dalam struktur gelang tienotiofen dan unsur penukar ganti florin dalam unit berulangan karbazol. Keputusan ini memenuhi prosedur bagi menggunakan bahan ini dalam aplikasi fotovoltac. Kami juga menerangkan perbezaan asas bagi penurunan molar penjerapan dan pembawa-cas di dalam polimer berstruktur asas-tienotiofen.

 

Kata kunci: polimer berkunjugat, tienotiofen, pengganding silang Suzuki, sel solar

 

References

1.       Yao, Y., Dong, H., and Hu, W. (2013)  Ordering of conjugated polymer molecules: recent advances and perspectives. Polymer Chemistry, 4: 5197-5205.

2.       Jenekhe, S. A. and Zhu, D. (2013) Conjugated polymers. Polymer Chemistry, 4, 5142-5143.

3.       Chen, Y.-C., Yu, C.-Y., Fan, Y.-L., Hung, L.-I., Chen, C.-P., and Ting, C. (2010) Low-bandgap conjugated polymer for high efficient photovoltaic applications. Chemical Communications, 46, 6503-6505.

4.       Prim, D. and Kirsch, G. (1994) Synthesis of new 2-arylthieno [3, 2-b] thiophenes. Journal of Chemical Society Perkin Transactions 1: 2603-2606.

5.       Masresha, T. (2006) Photovoltaic properties of polymer based bulk heterojunction solar cell composed of poly[3-(2,5-dioctyle-pheneyl) thiophene](PDOPT) and (PCBM). MSc Thesis. Addis Ababa University.

6.       Raj, M. R. and Anandan, S. (2013) Donor conjugated polymers-based on alkyl chain substituted oligobenzo[c]thiophene derivatives with well-balanced energy levels for bulk heterojunction solar cells. RSC Advances, 3: 14595-14608.

7.       Voortman, T. P., De Gier, H. D., Havenith, R. W. A., and Chiechi, R. C. (2014) Stabilizing cations in the backbones of conjugated polymers. Journal of Materials Chemistry C, 2: 3407-3415.

8.       Printz, A. D., Savagatrup, S., Burke, D. J., Purdy, T. N., and Lipomi, D. J. (2014) Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells. RSC Advances, 4: 13635-13643.

9.       Hoppe, H. and Sariciftci, N. S. (2006). Morphology of polymer/fullerene bulk heterojunction solar cells. Journal of Materials Chemistry, 16: 45-61.

10.    Biniek, L., Chochos, C. L., Leclerc, N., Hadziioannou, G., Kallitsis, J. K., Bechara, R., Leveque, P., and Heiser, T. (2009). A [3,2-b]thienothiophene-alt-benzothiadiazole copolymer for photovoltaic applications: design, synthesis, material characterization and device performances. Journal of Materials Chemistry, 19: 4946-4951.

11.    Choy, N., Russell, K. C., Alvarez, J. C., and Fider, A. (2000). Synthesis and redox properties of novel alkynyl flavins. Tetrahedron Letters, 41: 1515-1518.

12.    Mohamad, D. K., Fischereder, A., Yi, H., Cadby, A. J., Lidzey, D. G., and Iraqi, A. (2011). A novel 2,7-linked carbazole based "double cable" polymer with pendant perylene diimide functional groups: preparation, spectroscopy and photovoltaic properties. Journal of Materials Chemistry, 21: 851-862.

13.    Peet, J., Wen, L., Byrne, P., Rodman, S., Forberich, K., Shao, Y., Drolet, N., Gaudiana, R., Dennler, G., and Waller, D. (2011). Bulk heterojunction solar cells with thick active layers and high fill factors enabled by a bithiophene-co-thiazolothiazole push-pull copolymer. Applied Physics Letters, 98: 043301.

14.    Bronstein, H., Chen, Z., Ashraf, R. S., Zhang, W., Du, J., Durrant, J. R., Shakya Tuladhar, P., Song, K., Watkins, S. E., Geerts, Y., Wienk, M. M., Janssen, R. a. J., Anthopoulos, T., Sirringhaus, H., Heeney, M., and Mcculloch, I. (2011). Thieno[3,2-b]thiophene−Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. Journal of the American Chemical Society, 133: 3272-3275.

15.    Baek, M.-J., Lee, S.-H., Zong, K., and Lee, Y.-S. (2010). Low band gap conjugated polymers consisting of alternating dodecyl thieno[3,4-b]thiophene-2-carboxylate and one or two thiophene rings: Synthesis and photovoltaic property. Synthetic Metals, 160: 1197-1203.

16.    Chang, S.-W., Waters, H., Kettle, J., Kuo, Z.-R., Li, C.-H., Yu, C.-Y., and Horie, M. (2012) Pd-Catalysed Direct Arylation Polymerisation for Synthesis of Low-Bandgap Conjugated Polymers and Photovoltaic Performance. Macromolecular Rapid Communications, 33 (22):1927-1932.

17.    Duan, C., Huang, F., and Cao, Y. (2012) Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. Journal of Materials Chemistry, 22: 10416-10434.

18.    He, X. and Baumgartner, T. (2013). Conjugated main-group polymers for optoelectronics. RSC Advances, 3: 11334-11350.

19.    Yang, L., Tumbleston, J. R., Zhou, H., Ade, H., and You, W. (2013) Disentangling the impact of side chains and fluorine substituents of conjugated donor polymers on the performance of photovoltaic blends. Energy & Environmental Science, 6: 316-326.

20.    Sharma, G. D., Singh, M., Kurchania, R., Koukaras, E. N., and Mikroyannidis, J. A. (2013). Synthesis and characterization of two carbazole-based alternating copolymers with 4-nitrophenylcyanovinylene pendant groups and their use as electron donors for bulk heterojunction solar cells. RSC Advances, 3: 18821-18834.

21.    Pei, J., Wen, S., Zhou, Y., Dong, Q., Liu, Z., Zhang, J., and Tian, W. (2011). A low band gap donor-acceptor copolymer containing fluorene and benzothiadiazole units: synthesis and photovoltaic properties. New Journal of Chemistry, 35: 385-393.

22.    Nguyen, T. Q., Yee, R. Y., and Schwartz, B. J. (2001).Solution processing of conjugated polymers: the effects of polymer solubility on the morphology and electronic properties of semiconducting polymer films. Journal of Photochemistry and Photobiology A: Chemistry, 144: 21-30.

23.    Blouin, N., Michaud, A., Gendron, D., Wakim, S., Blair, E., Neagu-Plesu, R., Belletête, M., Durocher, G., Tao, Y., and Leclerc, M. (2008) Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. Journal of the American Chemical Society, 130:732-742.

24.    Reyes-Reyes, M., Kim, K., and Carroll, D. L. (2005). High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends. Applied Physics Letters, 87(8): 083506-083506-3.

25.    Moet, D. J. D., Koster, L. J. A., De Boer, B., and Blom, P. W. M. (2007). Hybrid Polymer Solar Cells from Highly Reactive Diethylzinc: MDMO–PPV versus P3HT. Chemistry Materials, 19: 5856-5861.

26.    Lee, J.-Y., Shin, W.-S., Haw, J.-R., and Moon, D.-K. (2009). Low band-gap polymers based on quinoxaline derivatives and fused thiophene as donor materials for high efficiency bulk-heterojunction photovoltaic cells. Journal of Materials Chemistry, 19: 4938-4945.

27.    Yu, D., Yang, Y., Durstock, M., Baek, J.-B., and Dai, L. (2010). Soluble P3HT-Grafted Graphene for Efficient Bilayer−Heterojunction Photovoltaic Devices. ACS Nano, 4, 5633-5640.

28.    Yi, H., Al-Faifi, S., Iraqi, A., Watters, D. C., Kingsley, J., and Lidzey, D. G. (2011). Carbazole and thienyl benzo[1,2,5]thiadiazole based polymers with improved open circuit voltages and processability for application in solar cells. Journal of Materials Chemistry, 21: 13649-13656.

29.    Wang, T., Pearson, A. J., Dunbar, A. D. F., Staniec, P. A., Watters, D. C., Yi, H., Ryan, A. J., Jones, R. A. L., Iraqi, A., and Lidzey, D. G. (2012) Correlating Structure with Function in Thermally Annealed PCDTBT:PC70BM Photovoltaic Blends. Advanced Functional Materials, 22: 1399-1408.

30.    Staniec, P. A., Parnell, A. J., Dunbar, A. D. F., Yi, H., Pearson, A. J., Wang, T., Hopkinson, P. E., Kinane, C., Dalgliesh, R. M., Donald, A. M., Ryan, A. J., Iraqi, A., Jones, R. A. L., and Lidzey, D. G. (2011). The Nanoscale Morphology of a PCDTBT:PCBM Photovoltaic Blend. Advanced Energy Materials, 1: 499-504.

31.    Pickup, D., Yi, H., and Iraqi, A. (2009). Preparation and properties of alternating 2,7-linked carbazole copolymers with phenylene units with varying number of fluorine substituents. Journal of Materials Science, 44: 3172-3178.

32.    Kun, H., Yi, H., Johnson, R. G., and Iraqi, A. (2008). Fluoro-protected carbazole main-chain polymers as a new class of stable blue emitting polymers. Polymers for Advanced Technologies, 19: 299-307.

33.    Sun, Y., Lin, B., Yang, H., and Gong, X. (2012). Improved bulk-heterojunction polymer solar cell performance through optimization of the linker groupin donor–acceptor conjugated polymer. Polymer, 53: 1535-1542.

34.    Lee, W. S., Park, J. H., Baek, M.-J., Lee, Y.-S., Lee, S.-H., Pyo, M., and Zong, K. (2010). Highly efficient synthesis of thieno[3,4-b]thiophene derivatives and (opto)electrochemical properties of new low bandgap conjugated polymers. Synthetic Metals, 160: 1368-1371.

35.    Abd El Haleem, S. M. and Ateya, B. G. (1981). Cyclic voltammetry of copper in sodium hydroxide solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 117: 309-319.

 

 




Previous                    Content                    Next