Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 91 - 101

 

 

 

POLY(DIMETHYLSILOXANE)-POLY(VINYL ALCOHOL) COATED SOLID PHASE MICROEXTRACTION FIBER FOR CHLORPYRIFOS ANALYSIS

 

(Gentian Pengekstrakan Mikro Fasa Pepejal Tersalut Poli(Dimetilsiloksana)-Poli(Vinil Alkohol) untuk Analisis Klorpirifos)

 

Wan Aini Wan Ibrahim1, 2*, Nor Fairul Zukry Ahmad Rasdy1, Norfazilah Muhamad1, Mohd Marsin Sanagi3

 

1Separation Science and Technology Group, Department of Chemistry, Faculty of Science

2Frontier Materials Research Alliance

3Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR)

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author: wanaini@kimia.fs.utm.my; waini@utm.my

 

 

Received: 9 December 2014; Accepted: 16 October 2015

 

 

Abstract

Traditional liquid – liquid extraction of pesticides consumes large volumes of organic solvent which are hazardous to the operator and is not environment friendly. Solid phase microextraction (SPME) is a solvent less extraction method which is safer to the operator and is environmental friendly. A sol-gel hybrid fibre coating material, poly(dimethylsiloxane)-poly(vinyl alcohol) (PDMS-PVA) was synthesized and used in head space solid phase microextraction (HS-SPME) of chlorpyrifos. The thickness of the synthesised PDMS-PVA fiber coating was 13.5 μm and it is thermally stable up to 400 °C. The PDMS-PVA sol-gel hybrid fiber was also stable to two organic solvents tested; acetonitrile and dichloromethane (1 hour dipping) and showed no significant changes in extraction performance for chlorpyrifos. Extracted chlorpyrifos was analysed using gas chromatography electron capture detector (GC-ECD). Optimum SPME parameters affecting the PDMS-PVA HS-SPME performance namely extraction time (15 min), extraction temperature (50 °C), desorption time (5 min), desorption temperature (260 °C) and stirring rate (120 rpm) were used for extraction. It was found that HSSPME using PDMS-PVA sol-gel fiber gave significantly better extraction performance of chlorpyrifos compared to commercial 100 μm PDMS fiber. The PDMS-PVA fiber showed excellent operational performances such as temperature stability (up to 380 °C), coating lifetime (up to 170 times use) and organic solvent stability. The PDMS-PVA-HS-SPME method showed excellent recovery for chlorpyrifos from tomatoes (98.0 %, 5.9% RSD) at 0.01 μg/g spiked level (5 times lower than maximum residue limit set by European Union).

 

Keywords: sol-gel hybrid, solid phase microextraction, chlorpyrifos, gas chromatography-electron capture detector

 

Abstrak

Pengekstrakan cecair – cecair tradisional bagi pestisid menggunakan isipadu pelarut organik yang banyak yang merbahaya kepada operator dan tidak mesra alam. Pengekstrakan mikro fasa pepejal (SPME) adalah teknik pengekstrakan tanpa pelarut yang lebih selamat kepada operator dan mesra alam. Bahan gentian tersalut hibrid sol-gel poli(dimetilsiloksana)-poli(vinil alkohol) (PDMS-PVA) telah disintesis dan digunakan untuk pengekstrakan mikro fasa pepejal ruang kepala (HS-SPME) klorpirifos. Ketebalan PDMS-PVA gentian tersalut yang telah disintesis ialah 13.5 µm dan stabil terma sehingga 400 °C. Gentian hibrid sol-gel PDMS-PVA juga stabil terhadap dua pelarut organik yang diuji, asetonitril dan diklorometana (1 jam celupan) dan tidak menunjukkan perbezaan ketara dalam prestasi pengekstrakan klorpirifos. Klopirifos yang telah diekstrak dianalisis menggunakan  kromatografi gas-pengesan penangkapan elektron (GC-ECD). Parameter optimum SPME yang mempengaruhi prestasi PDMS-PVA-HS-SPME iaitu masa pengekstrakan (15 min), suhu pengekstrakan (50 °C), masa penyaherapan (5 min). suhu penyaherapan (260 °C) dan kadar putaran (120 rpm) telah digunakan untuk pengekstrakan. HS-SPME menggunakan gentian sol-gel PDMS-PVA menunjukkan prestasi pengekstrakan yang jauh lebih signifikan untuk klorpirifos berbanding dengan gentian komersial 100 µm PDMS. Gentian PDMS-PVA telah menunjukkan prestasi operasi yang cemerlang seperti kestabilan suhu (sehingga 380 °C), jangka hayat salutan (sehingga 170 kali penggunaan) dan kestabilan terhadap pelarut organik. Kaedah PDMS-PVA HS-SMPE menunjukkan perolehan semula yang cemerlang untuk klorpirifos daripada  sampel tomato (98.0 %, 5.9%  RSD) pada  aras pakuan 0.01 µg/g  (5 kali lebih rendah daripada had maksimum residu yang ditetapkan oleh Kesatuan Eropah).

 

Kata kunci:   hibrid sol-gel, pengekstrakan mikro fasa pepejal, klorpirifos, kromatografi gas pengesan penangkapan elektron

 

References

1.       Bartak, P. and Cap, L. (1997). Determination of Phenols by Solid-Phase Microextraction. Journal of Chromatography A, 767: 171 – 175.

2.       Liu, Y., Lee, M. L., Hageman, K. J., Yang, Y. and Hawthorne, S. B. (1997). Solid-Phase Microextraction of PAHs from Aqueous Samples Using Fibers Coated with HPLC Chemically Bonded Silica Stationary Phases. Analytical Chemistry, 69: 5001. 

3.       Wan, H. B., Chi, H., Wong, M. K. and Mok, C. Y. (1994). Solid-Phase Microextraction Using Pencil Lead as Sorbent for Analysis of Organic Pollutants in Water. Analytica Chimica. Acta, 298: 219 – 223.

4.       Kuo, C. P. and Shiea, J. (1999). Application of Direct Electrospray Probe to Analyze Biological Compounds and to Couple to Solid-Phase Microextraction to Detect Trace Surfactants in Aqueous Solution. Analytical Chemistry, 71: 4413 – 4417.

5.       Gorecki, T., Martos, P. and Pawliszyn, J. (1998). Strategies for the Analysis of Polar Solvents in Liquid Matrixes. Analytical Chemistry, 70: 19 – 27.

6.       Wu, J. C. and Pawliszyn, J. (2001). Polypyrrole-Coated Capillary Coupled to HPLC for In-Tube Solid-Phase Microextraction and Analysis of Aromatic Compounds in Aqueous Samples. Analytical Chemistry, 73: 55 – 63.

7.       Djozan, D., Assadi, Y. and Haddadi, S. H. (2001). Anodized Aluminium Wire as a Solid-Phase Microextraction. Analytical Chemistry, 73: 4054 – 4058.

8.       Koster, E. H. M., Crescenzi, C., Hoedt, W., Ensing, K. and Jong, G. J. (2001). Fibers Coated with Molecularly Imprinted Polyemers for Solid-Phase Microextraction. Analytical Chemistry, 73: 3140 – 3145.

9.       Yu, J., Wu, C. and Xing, J. (2004). Development of New Solid-Phase Microextraction Fibers by Sol-Gel Technology for the Determination of Organophosphorus Pesticide Multiresidues in Food. Journal of Chromatography A, 1036: 101 – 111.  

10.    Malik, A., Chong, S. L., Wang, D. X., Hayers, J. D. and Wilhite, B. W. (1997). Sol-Gel Coating Technology for the Preparation of Solid-Phase Microextraction Fibers of Enhanced Thermal Stability. Analytical Chemistry, 69: 3889 – 3898.

11.    Bigham, S., Medlar, J., Kabir, A., Shende, C., Alli, A. and Malik, A. (2002). Sol-Gel Capillary Microextraction. Analytical Chemistry, 74: 752 – 761.

12.    da Costa, R. G. and Augusto, F. (2005). Highly Porous Solid-Phase Microextraction Fiber Coating Based on Poly(ethylene glygol)-Modified Ormosil Synthesized by Sol-Gel Technology. Journal of Chromatography A, 1072; 7 –12.

13.    Cajlakovic, M., Lobnik. A. and Werner. T. (2002). Stability of New Optical pH Sensing Material Based on Cross-Linked Poly(Vinyl Alcohol) copolymer. Analytical Chimica Acta, 455: 207 – 213.

14.    Dislich, H. I. (1998). Sol-Gel Technology for Thin Films, Fibers, Performs, Electrons and Specialty Shapes. Klein L. C edition, Noyes Publications, Park Riders, New Jersey. 

15.    Su, P. G. and Huang, S.D.(1999). Determination of Organophosphorus Pesticides in Water by Solid-Phase Microextraction. Talanta, 49: 393 – 402.

16.    Li, X., Zheng. Z. R., Gao, S. Z. and Li, H. B. (2004). Preparation of Sol-Gel Coated Calix[4]arene Fiber for Solid-Phase Microextraction. Journal of Chromatography A, 1023: 15 – 25. 

17.    Hu, H. L., Yang, Y. Y., Huang, J. X. and Li, G. (2005). Preparation and Application of Poly(dimethylsiloxane)/β-cyclodextrin Solid-Phase Microextraction Membrane. Journal of Chromatography A, 543: 17 – 24.

18.    Liu, M. M., Zeng, Z. R. and Fang, H. F. (2005). Preparation and Application of the Sol-gel derived acrylate/silicone co-polymer Coatings for Headspace Solid-Phase Microextraction of 2-Chloroethyl Ethyl Sulfide in Soil. J. Chromatogr. A, 1076: 16 – 26. 

19.    Liu, M. M., Liu, Y., Zeng, Z. R. & Peng, T. Y. (2006). Preparation and Characteristics of High pH Resistant Sol-gel Alumina-based Hybrid Organic-Inorganic Coating for Solid-Phase Microextraction of Polar Compounds. Journal of Chromatography A, 1108: 149 –157.

20.    Kataoka, H., Lord, H. L. and Pawliszyn, J. (2000). Applications of Solid-Phase Microextraction in Food Analysis. Journal of Chromatography A, 880: 389 – 404.

21.    Navalon, A., Prieto, A., Araujo, L. and Vilchez, J. L. (2002). Determination of Oxadiazon Residues by Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. Journal of Chromatography A, 946: 239 –245.

22.    Zambonin, C. G., Cilenti, A. and Palmisano, F. (2002). Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry for the Rapid Screening of Triazole Residues in Wine and Strawberries. Journal of Chromatography. A, 967: 255 –260.

23.    Pawliszyn, J. (1997). Solid-Phase Microextraction-Theory and Practice. New York: Wiley-VCH.

24.    European Database Pesticide Database. (2000). Retrieved from ec.europa.eu/sanco_pesticides/public [Access online on 8th August 2014].

 




Previous                    Content                    Next