Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 102 - 110

 

 

 

ENHANCED ACTIVITY OF C3N4 WITH ADDITION OF ZnO FOR PHOTOCATALYTIC REMOVAL OF PHENOL UNDER VISIBLE LIGHT

 

(Peningkatan Aktiviti C3N4 dengan Penambahan ZnO untuk Fotomangkin Penyingkiran Phenol di bawah Sinaran Tampak)

 

Faisal Hussin1, Hendrik O. Lintang2, Leny Yuliati2*

 

1Department of Chemistry, Faculty of Science,

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

 

*Corresponding author: leny@ibnusina.utm.my

 

 

Received: 9 December 2014; Accepted: 3 January 2016

 

 

Abstract

Phenol is a stable and hazardous compound that is commonly found as an industrial effluent. Phenol can be treated by photocatalysis using zinc oxide (ZnO) as a photocatalyst. Unfortunately, the use of ZnO in photocatalysis is limited due to the poor response to the visible light. On the other hand, carbon nitride (C3N4) is able to absorb visible light. In the present study, a series of ZnO-C3N4 was prepared by impregnation method. The effect of zinc to carbon mol ratio (Zn/C) on the properties and photocatalytic activity was examined. X-ray Diffraction (XRD) patterns of the samples revealed that as the Zn mol ratio increased, the intensity of diffraction peaks for ZnO also increased but the intensity for C3N4 decreased. All prepared composite materials have an extended absorption band in the visible light region due to the presence of C3N4, as supported by DR UV-Vis spectra. The prepared ZnO-C3N4 composites were further investigated in the photocatalytic removal of phenol under visible light for 5 hours. All ZnO-C3N4 samples showed higher activity than the bare ZnO with Zn/C mol ratio of 1% showed the highest photocatalytic activity for removal of phenol among all the samples. The high activity observed on the ZnO-C3N4 would be due to role of ZnO to suppress electron-hole recombination and C3N4 to extend the absorption of ZnO in the visible light region.

 

Keywords: zinc oxide, carbon nitride, ZnO-C3N4 composites, impregnation method, phenol

 

Abstrak

Fenol adalah sebatian stabil dan berbahaya yang sering dijumpai sebagai efluen industri. Fenol boleh dirawat dengan cara fotopemangkinan menggunakan zink oksida (ZnO) sebagai fotomangkin. Malangnya, penggunaan ZnO di dalam fotopemangkinan adalah terhad disebabkan sedikit respons terhadap sinaran tampak. Sebaliknya, karbon nitrida (C3N4) mampu menyerap sinaran tampak. Dalam kajian ini, siri ZnO-C3N4 telah disediakan melalui kaedah pengisitepuan. Kesan nisbah mol zink kepada karbon (Zn/C) kepada ciri dan aktiviti fotomangkin telah diperiksa. Corak pembelauan sinar-x (XRD) daripada sampel – sampel membuktikan bahawa kesan nisbah mol Zn meningkat, keamatan puncak pembelauan untuk ZnO semakin naik tetapi keamatan untuk C3N4 semakin kurang. Semua bahan komposit yang disediakan mampu memperluaskan jalur penyerapan di dalam kawasan sinaran tampak disebabkan kehadiran C3N4 dan disokong oleh spectrum DR UV-Vis. Komposit ZnO-C3N4 yang disediakan selanjutnya dikaji di dalam fotomangkin penyingkiran fenol di bawah sinaran tampak selama 5 jam. Kesemua sampel ZnO-C3N4 mempunyai aktiviti yang tinggi berbanding hanya ZnO dengan 1% nisbah mol Zn/C menunjukkan aktiviti fotomangkin tertinggi dalam penyingkiran fenol. Aktiviti tinggi yang dilihat terhadap ZnO-C3N4 berkemungkinan disebabkan peranan ZnO untuk membantutkan penggabungan semula lubang elektron dan C3N4 untuk memperluaskan penyerapan ZnO di dalam kawasan sinaran tampak.

 

Kata kunci: zink oksida, karbon nitrida, komposit ZnO-C3N4, kaedah pengisitepuan, fenol

 

References

1.       Wang, L., Kang, Y., Lui, X., Zhang, S., Huang, W. and Wang, S. (2012). ZnO Nanorod Gas Sensor for Ethanol Detection. Sensors Actuators B: Chemical, 162 (1): 237 – 243.

2.       Wang, W., Huang, H., Li, Z., Zhang, H., Wang, Y., Zheng, W. and Wang, C. (2008). Zinc Oxide Nanofibers Gas Sensor via Electrospinning. Journal of the American Ceramic Society, 91 (11): 3817 – 3819.

3.       Jean, J., Chang, S., Brown, P. R., Cheng, J. J., Rekemeyer, P. H., Bawendi, M. G., Gradečak, S. and Bulović, V. (2013). ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells. Advanced Materials, 25 (20): 2790 – 2796.

4.       Zhang, M.-L., Jin, F., Zheng, M.-L., Liu, J., Zhao, Z.-S. and Duan, X.-M. (2014). High Efficiency Solar Cell Based on ZnO Nanowire Array Prepared by Different Growth Methods. RSC Advances, 4 (21): 10462 – 10466.

5.       Kaur, J., Bansal, S. and Singhal, S. (2013). Photocatalytic Degradation of Methyl Orange Using ZnO Nanopowders Synthesized via Thermal Decomposition of Oxalate Precursor Method. Physica B: Condensed Matter. 416: 33 – 38.

6.       Kayaci, F., Vempati, S., Donmez, I., Biyikli, N. and Uyar, T. (2014). Role of Zinc Interstitial and Oxygen Vacancies of ZnO in Photocatalysis: A Bottom-up Approach to Control Defect Density. Nanoscale, 6 (17): 10224 –10234.

7.       Tian, C., Zhang, Q., Wu, A., Jiang, M., Liang, Z., Jiang, B. and Fu, H. (2012). Cost-Effective Large-Scale Synthesis of ZnO Photocatalysts with Excellent Performance for Dye Photodegradation. Chemical Communication, 48 (23): 2858 – 2860.

8.       Kumar, R., Kumar, G. and Umar, A. (2013). ZnO Nano-Mushrooms for Photocatalytic Degradation of Methyl Orange. Materials Letters, 97: 100 – 103.

9.       Ameen, S., Akhtar, M.S., Nazim, M. and Shin, H.-S. (2013). Rapid Photocatalytic Degradation of Crystal Violet Dye over ZnO Flower Nanomaterials. Materials Letters, 96: 228 – 232.

10.    Suchanek, W. L. (2009). Systematic Study of Hydrothermal Crystallization of Zinc Oxide (ZnO) Nano-Sized Powders with Superior UV Attenuation. Journal of Crystal Growth, 312 (1): 100 – 108.

11.    Lu, Y.-H., Lin, W.-H., Yang, C.-Y., Chiu, Y.-H., Pu, Y.-C, Lee, M.-H., Tseng, Y.-C. and Hsu. Y.-J. (2014). A Facile Green Antisolvent Approach to Cu2+-Doped ZnO Nanocrystals with Visible-Light Responsive Photoactivities. Nanoscale, 6 (15): 8796 – 8803.

12.    Li, P., Wei, Z., Wu, T., Peng, Q. and Li, Y. (2011). Au-ZnO Hybrid Nanopyramids and Their Photocatalytic Properties. Journal of the American Chemical Society, 133 (15): 5660 – 5663.

13.    Chauhan, R., Kumar, A. and Chaudhary, R.P. (2012). Photocatalytic Studies of Silver Doped ZnO Nanoparticles Synthesized by Chemical Precipitation Method. Journal of Sol-Gel Science Technology, 63 (3): 546 – 553.

14.    Sarkar, S., Makhal, A., Bora, T., Lakhsman, K., Singha, A., Dutta, J. and Pal., S.K. (2012). Hematoporphyrin-ZnO Nanohybrids: Twin Applications in Efficient Visible-Light Photocatalysis and Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 4 (12): 7027 – 7035.

15.    Yang, G. C. C. and Chan, S.-W. (2009). Photocatalytic Reduction of Chromium (VI) in Aqueous Solution using Dye-Sensitized Nanoscale ZnO under Visible Light Irradiation. Journal of Nanoparticle Research, 11 (1): 221 – 230.

16.    Zou, X., Wang, P.-P., Li, C., Zhao, J., Wang, D., Asefa, T. and Li, G.-D. (2014). One-Pot Cation Exchange Synthesis of 1D Porous CdS/ZnO Heterostructures for Visible-Light-Driven H2 Evolution. Journal of Materials Chemistry A, 2 (13): 4682 – 4689.

17.    Yan, H., Chen, Y. and Xu. S. (2012). Synthesis of Graphitic Carbon-Nitride by Directly Heating Sulfuric Acid Treatment Melamine for Enhanced Photocatalytic H2 Production from Water Under Visible Light.  International Journal of Hydrogen Energy, 37 (1): 125 – 133.

18.    Wang, Y., Shi, R., Lin, J. and Zhu, Y. (2011). Enhancement of Photocurrent and Photocatalytic Activity of ZnO Hybridized with Graphite-Like C3N4.  Energy & Environmental Science, 4 (8): 2922 – 2929.

19.    Pardeshi, S.K. and Patil, A.B. (2008). A Simple Route for Photocatalytic Degradation of Phenol in Aqueous Zinc Oxide Suspension Using Solar Energy. Solar Energy, 82 (8): 700 – 705.

20.    Ahmed, S., Rasul, M. G, Martens, W. N., Brown, R. and Hashib, M. A. (2010). Heterogeneous Photocatalytic Degradation of Phenols in Wastewater: A Review on Current Status and Developments. Desalination, 261(1-2): 3 –18.

21.    Pang, L.-L., Bi, J.-Q., Bai, Y.-J., Qi, Y.-X., Zhu, H.-L., Wang, C.-G., Wu, J.-W. and Lu, C.-W. (2008). Rapid Synthesis of Graphitic Carbon Nitride Powders by Metathesis Reaction between CaCN2 and C2Cl6. Materials Chemistry Physics, 112 (3): 1124 –1128.

22.    Sam, M. S., Lintang, H. O., Sanagi, M. M., Lee, S.L. and Yuliati, L. (2014). Mesoporous Carbon Nitride for Adsorption and Fluorescence Sensor of N-Nitrosopyrrolidine. Spectrochimica Acta Part A: Molecular and Bimolecular Spectroscopy, 124: 357 – 364.

23.    Li, X., Zhang, J, Shen, L., Ma, Y., Lei, W., Cui, Q. and Zou, G. (2009). Preparation and Characterization of Graphitic Carbon Nitride through Pyrolysis of Melamine. Applied Physics A, 94 (2): 387 – 392.

24.    Martha, S., Nashim, A. and Parida, K.M. (2013) Facile Synthesis of Highly Active g-C3N4 for Efficient Hydrothermal Production under Visible Light. Journal of Materials Chemistry A, 1: 7816 –7824.

25.    Luo, Q.-P., Yu, X.-Y., Lei, B.-X., Chen, H.-Y., Kuang, D.-B. and Su, C.-Y. (2012). Reduced Graphene-Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity. Journal of Physical Chemistry C, 116: 8111 – 8117.

 




Previous                    Content                    Next