Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 121 - 130

 

 

 

INVESTIGATION ON OPTICAL AND PHOTOELECTROCHEMICAL PROPERTIES OF SELF-ASSEMBLED TITANIA NANOTUBE ARRAYS PREPARED BY ANODIZATION

 

(Penyiasatan Sifat Optik dan Fotoelektrokimia Swahimpunan Nanotiub Titania

Bertatasusunan yang Disediakan Melalui Penganodan)

 

Lim Ying Chin1*, Zulkarnain Zainal2, Mohd Zobir Hussein3, Tan Wee Tee2

 

1School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

2Department of Chemistry, Faculty of Science

3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA)

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: limyi613@salam.uitm.edu.my

 

 

Received: 9 December 2014; Accepted: 16 November 2015

 

 

Abstract

Well ordered and vertically oriented titania nanotubes (TNT) are of great scientific interest due to their high surface area, fewer interfacial grain boundaries and excellent charge transfer between interfaces; all are critical properties in photoelectrochemical and photocatalysis application. In this study, self-assembled TNT electrodes were synthesized by anodization of pure Ti in 0.5 wt.% NH4F solution (NH4F/H2O), in mixture of aqueous-organic solution (NH4F/H2O/EG) and in an organic solution (NH4F/EG). Choice of electrolytic medium has an influence on the crystalline structure, regularity, elemental composition and band gap of TNT. All the samples showed a red shift and stronger absorption in the wavelength between 500-700 nm ascribed to the surface colour and increase crystallinity upon calcination. TNT formed in NH4F/H2O solution has the highest direct band gap of 3.34 eV due to quantization effect. From Liner Sweep Photovoltammetry analysis, the lowest photocurrent was recorded for TNT anodized in NH4F/H2O and a twofold and fivefold increase on the magnitude of photocurrent was obtained for those formed in NH4F/H2O/EG and NH4F/EG solution, respectively. Hence, highest photoefficiency of 2.79 % was recorded for TNT formed in NH4F/EG probably due to the formation of longer length tube.

 

Keywords: titania, nanotube, anodization, photoefficiency, band gap energy

 

Abstrak

Nanotiub titanium dioksida yang bertertib rapi dan berorientasi mencancang (TNT) telah menarik perhatian disebabkan luas permukaan yang tinggi, sempadan butiran antara muka yang rendah dan pemindahan cas yang cemerlang di antara muka, yang mana semua ini merupakan ciri – ciri kritikal dalam aplikasi fotoelektrokimia and fotopemangkinan. Dalam kajian ini, swahimpunan TNT telah disintesis melalui penganodan plat titanium tulen dalam larutan 0.5 wt.% NH4F (NH4F/H2O), campuran larutan akua-organik (NH4F/EG/H2O) dan larutan organik (NH4F/EG). Pilihan media elektrolisis memberi kesan ke atas struktur hablur, keteraturan, komposisi unsur dan julang jalur TNT. Semua sampel mempamerkan anjakan merah dan penyerapan yang lebih kuat dalam julat gelombang 500 – 700 nm disebabkan warna permukaan sampel dan peningkatan kehabluran selepas pemanasan. Dari analisis fotovoltammetri pengimbasan linear, TNT yang teranod dalam larutan NH4F/H2O mencatatkan fotoarus yang terendah manakala peningkatan lipat ganda dua dan ganda lima dalam magnitud fotoarus boleh didapati untuk TNT yang teranod dalam larutan NH4F/H2O/EG dan NH4F/EG. Oleh yang demikian, TNT yang dibentuk dalam latutan NH4F/EG mencatatkan kecekapan foto yang tertinggi sebanyak 2.79 % mungkin disebabkan oleh pembentukan tiub yang lebih panjang.

 

Kata kunci: titania, nanotiub, penganodan, kecekapan foto, jalur jurang tenaga

 

References

1.       Jen, H. P., Lin, M. H., Li, L. L., Wu, H. P., Huang, W. K., Cheng, P. J. and Diau, E. W. G. (2013). High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays. ACS Materials & Interfaces5(20), 10098 – 10104.

2.       Yu, M., Long, Y. Z., Sun, B. and Fan, Z. (2012). Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale4(9), 2783 – 2796.

3.       Smith, Y. R., Sarma, B., Mohanty, S. K. and Misra, M. (2013). Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting. International Journal of Hydrogen Energy38(5), 2062 – 2069.

4.       Liu, Y., Cheng, Y., Chen, K., Yang, G., Peng, Z., Bao, Q. and Chen, W. (2014). Enhanced light-harvesting of the conical TiO2 nanotube arrays used as the photoanodes in flexible dye-sensitized solar cells. Electrochimica Acta. 146: 838 – 844.

5.       Masuda, H. and Fukuda, K. (1995). Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466 – 1468.

6.       Ruan, C., Paulose, M., Varghese, O. K., Mor, G. K. and Grimes, C. A. (2005). Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal Physical Chemistry B 109(33):15754 – 15759.

7.       Anitha, V. C., Menon, D., Nair, S. V. and Prasanth, R. (2010). Electrochemical tuning of titania nanotube morphology in inhibitor electrolytes. Electrochimica Acta 55(11):3703 – 3713.

8.       Sreekantan, S., Saharudin, K., Lockman, Z. and Tzu, T. (2010). Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. Nanotechnology 21:365603.

9.       Sohn, Y. S., Smith, Y. R., Misra, M. and Subramanian, V. (2008). Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes. Applied Catalysis B: Environmental 84(3-4):372 – 378.

10.    Song, X. M., Wu, J. M. and Yan, M. (2009). Photocatalytic degradation of selected dyes by titania thin films with various nanostructures. Thin Solid Films 517(15):4341 – 4347.

11.    Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K. and Grimes, C. A. (2005). Enhanced photocleavage of water using titania nanotube arrays. Nano Letters 5(1):191 – 195.

12.    Shankar, K., Mor, G. K., Prakasam, H. E., Yoriya, S., Paulose, M., Varghese, O. K. and Grimes, C. A. (2007). Highly ordered TiO2 nanotube arrays up to 220 mm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18(6):065707.

13.    Paulose, M., Prakasam, H. E., Varghese, O. K., Peng, L., Popat, K. C., Mor, G. K., Desai, T. A. and Grimes, C. A. (2007). TiO2 nanotube arrays of 1000 mm length by anodization of titanium foil: Phenol red diffusion. Journal Physical Chemistry C 111(41):14992 – 14997.

 

14.    Watcharenwong, A., Chanmanee, W., de Tacconi, N. R., Chenthamarakshan, C. R., Kajitvichyanukuk, P. and Rajeshwar, K. (2007). Self-organized TiO2 nanotube arrays by anodization of Ti substrate: Effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response. Journal Material Research 22(11):3186 – 3195.

15.    Nazeeruddin, M. K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B. and Grätzel, M. (2005). Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal American Chemical Society, 127(48):16835 – 16847.

16.    Roy, P., Albu, S. P. and Schmuki, P. (2010). TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops. Electrochemistry Communications, 12(7):949 – 951.

17.    HyeokáPark, J. and GuáKang, M. (2008). Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chemical Communications, (25):2867 – 2869.




Previous                    Content                    Next