Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 131 - 141

 

 

 

EPOXIDATION SYNTHESIS OF LINOLEIC ACID FOR RENEWABLE ENERGY APPLICATIONS

 

(Penghasilan Asid Linoleik Berepoksidasi untuk Penggunaan Tenaga yang Diperbaharui)

 

Bashar Mudhaffar Abdullah1, Rahimi M. Yusop2*, Jumat Salimon2, Darfizzi Derawi2, Waled Abdo Ahmed2

 

1Clinical Investigation Centre,

University Malaya Medical Centre, 13th Floor Main Tower, Lembah Pantai, 59100 Kuala Lumpur, Malaysia

2Oleochemistry Programme, School of Chemical Sciences & Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: rahimi@ukm.edu.my

 

 

Received: 3 August 2015; Accepted: 4 November 2015

 

 

Abstract

Monoepoxidation linoleic acid (MEOA) has advantages for industrial applications. MEOA was synthesized using immobilized Candida antarctica lipase (Novozym 435®). At optimum conditions, higher yield (82.14 %) and medium oxirane oxygen content, OOC (4.91 %) of MEOA were predicted at 15 µL of H2O2, 120 mg of Novozym 435® and 7 hours of reaction time. Fourier Transform Infrared Spectroscopy (FTIR) spectra of the MEOA showed monoepoxide group at 820 cm-1. 1H NMR analysis confirmed the monoepoxide group at 2.92 – 3.12 ppm while the monoepoxide signals of 13C NMR appear at 54.59 – 57.29 ppm. LC-MS analysis shows that of MEOA gives m/z at 296.22 as final product. MEOA exhibited good pour point (PP) of -41 ºC. Flash point (FP) of MEOA increased to 128 ºC comparing with 115 ºC of linoleic acid (LA). In a similar fashion, viscosity index (VI) for LA was 224 generally several hundred centistokes (cSt) more viscous than MEOA 130.8. MEOA was screened to measure their oxidative stability (OT) which was observed at 168 ºC. It is evident that increasing the hydrogen peroxide amount has a strong effect on the reaction kinetics; however, a large excess of hydrogen peroxide results in accumulation of peracid in the final product.

 

Keywords: linoleic acid, Novozym 435®, self-epoxidation, renewable energy

 

Abstrak

Mono-pengepoksidaan asid linoleik (MEOA) mempunyai kelebihan untuk aplikasi industri. MEOA telah disintesis menggunakan Candida Antartika lipase (Novozym 435 ®) pegun. Pada keadaan yang optimum, peratus hasil MEOA sebanyak 82.1 % dengan kandungan oksigen oksirana (OOC) sebanyak 4.91 % diperolehi dengan menggunakan 15 µL H2O2, 120 mg Novozym 435 ® dan 7 jam tindak balas. Analisis 1H NMR mengesahkan kumpulan terepoksida pada 2.92 –3.12 ppm manakala isyarat 13C NMR menunjukkan bacaan pada 54.59 – 57.29 ppm. Analisis LC-MS menunjukkan bahawa MEOA memberikan m/z 296.22 sebagai produk akhir. MEOA menunjukkan takat tuang yang baik pada suhu -41 ºC. Takat kilat MEOA meningkat pada suhu 128 ºC berbanding pada suhu 115ºC oleh asid linoleik (LA). Dalam keadaan yang sama, kebiasaanya VI untuk LA pada 224 beberapa ratus sentistok (cSt) lebih likat daripada MEOA 130.8. MEOA mempunyai kestabilan oksidatif pada suhu 168 ºC. MEOA berpotensi untuk dijadikan sebagai produk pertengahan dalam aplikasi tenaga keterbaharuan.

 

Kata kunci: asid linoleik, Novozym 435®, pengepoksidaan, tenaga diperbaharui

 

References

1.       Ruesch, M. and Warwel, S. (1999). Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis. Industrial Crops and Products, 9: 125 – 132.

2.       Meyer, P-P., Techaphattana, N., Manundawee, S., Sangkeaw, S., Junlakan, W. and Tongurai, C. (2008). Epoxidation of soybean oil and Jatropha oil. Thammasat International Journal of Science Technology, 13: 1 – 5.

3.       Ferrari, M., Ghisalberti, E. L., Pagnoni, U. M. and Pelizzoni, F. (1968). Monoepoxidation of methyl linoleate: (±)-methyl vernolate and (±)-methyl coronarate. Journal of the American Oil Chemists’ Society, 45: 649 – 651.

4.       Orellana-Coca, C., Camocho, S., Adlercreutz, D., Mattiasson B. and Hatti-Kaul, R. (2005). Chemo-enzymatic epoxidation of linoleic acid: parameters influencing the reaction. European Journal of Lipid Science Technology, 107: 864 – 870.

5.       Du, G., Tekin, A., Hammond, E. G. and Woo, L. K. (2004). Catalytic epoxidation of methyl linoleate. Journal of the American Oil Chemists’ Society, 81: 477 – 480.

6.       Siew, W. L., Tang, T. S. and Tan, Y. A. (1995). PORIM test methods. Volume 1. Palm Oil Research Institution of Malaysia.

7.       Salimon, J., Salih, N. and Abdullah, B. M. (2011). Improvement of physicochemical characteristics of monoepoxide linoleic acid ring opening for biolubricant base oil. Journal of Biomedicine and Biotechnology, 2011: 1 – 8.

8.       Salimon, J., Abdullah, B. M. and Salih, N. (2012). Selectively increasing of polyunsaturated (18:2) and monounsaturated (18:1) fatty acids in Jatropha curcas seed oil by crystallization using D-optimal design. Chemistry Central Journal, 2012: 6: 65 – 80.

9.       Zubrick, J.W. (2000). The Organic chem lab survival manual, 5th edition, Wiley & Sons, Inc., New York.

10.    Warwel, S. and Klaas, M.R.G. (1995). Chemo-enzymatic epoxidation of unsaturated carboxylic acids. Journal of Molecular Catalysis B: Enzymatic, 1: 29 – 35.

11.    Socrates, G. (2001). Infrared and Raman characteristic group frequencies: Tables and charts.  3rd ed. John Wily & Sons Ltd. Chichester, England.

12.    Hwang, H-S. & Erhan, S.Z. (2006). Synthetic lubricant basestocks from epoxidezed soybean oil and Guerbet alcohols. Industrial Crops and Products, 23: 311 – 317.

13.    Abdullah, B. M. and Salimon, J. (2009). Physicochemical characteristics of Malaysian rubber (Hevea brasiliensis) seed oil. European Journal of Scientific Research, 31: 437 – 445.

14.    Doll, K. M., Sharma, B. K. and Erhan, S. Z. (2007). Synthesis of branched methyl hdroxy stearates including an ester from bio-based levulinic acid. Industrial and Engineering Chemistry Research, 46: 3513 – 3519.

15.    Zhang, Y.Y., Ren, T. H., Wang, H. D. and Yi, M. R. (2004). A comparative study of phenol-type antioxidants in methyl oleate with quantum calculations and experiments. Lubrication Science, 16: 385 – 392.

16.    Samuelsson, J. and Johansson M. (2001). A Study of fatty acid methyl esters with epoxy or alkyne functionalities. Journal of the American Oil Chemists’ Society, 78: 1191 – 1196.

17.    Hsu, F-F. and Turk, J. (2004). Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation. Journal of the American Society for Mass Spectrometry, 15: 536 – 546.




Previous                    Content                    Next