Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 142 - 148

 

 

 

NUTRIENT REMOVAL OF GREY WATER FROM WET MARKET USING SEQUENCING BATCH REACTOR

 

(Penyingkiran Nutrien Air Basuhan dari Pasar Basah Mengguna Reaktor Kelompok Urutan)

 

Omar Danial1, Mohd Razman Salim1,2, Salmiati1,2*

 

1Department of Environmental Engineering, Faculty of Civil Engineering

2 Center of Environmental Sustainabiliy and Water Security (IPASA), Research Institute for Sustainable Environment (RISE)

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author: salmiati@utm.my

 

 

Received: 9 December 2014; Accepted: 16 October 2015

 

 

Abstract

Fresh water scarcity has become an important issue in this world today. Water reuse is known as one of the strategies to overcome this problem. Grey water is one of the sources of reused water. Several researches were carried out on water reuse, but limited attention was focused on reusing grey water from wet market, which contains high nutrient and organic matters. This study was carried out on nutrient removal from grey water using sequencing batch reactor (SBR). The grey water sample was taken from a wet market (Pasar Peladang, Skudai). About 1L of grey water was fed into the reactor with a total volume of 4L. Anoxic-aerobic phase were divided with a ratio of 30%-70% of total time respectively. Mixing was maintained at 30 rpm during the start of each cycle until settling phase to achieve uniform condition. Influent and effluent were set for 30 minutes. The SBR was operated with 3 cycles/day, temperature 30°C, cycle time 8 hours and hydraulic retention time (HRT) 1.2 days. Aeration at 35 L/min was induced for ammonia conversion and assisting nitrification..  The results show that the bacteria growing in alternating anoxic/aerobic systems could remove organic substrates and nutrient. The COD, Total Nitrogen and Total Phosphorus removal efficiencies were maximum at the levels of 94%, 88% and 70% respectively. Anaerobic-Aerobic-Anoxic phase was proposed to increase the removal percentage.

 

Keywords: SBR system, nutrient removal, grey water, hydraulic retention time, chemical oxygen demand

 

Abstrak

Kekurangan bekalan air bersih menjadi isu penting di dunia pada masa kini. Penggunaan semula air sisa yang telah diolah dikenali sebagai salah satu langkah strategik untuk mengatasi masalah ini. Penggunaan semula air basuhan telah menjadi salah satu sumber yang penting sebagai air sisa kitar semula. Beberapa kajian tentang perkara ini telah dijalankan, tetapi fokus yang berkaitan penggunaan semula air basuhan dari pasar basah, yang mengandungi nutrien dan permintaan oksigen kimia (COD) yang tinggi, agak terbatas. Kajian ini mengenai penyingkiran nutrien di dalam air basuhan dari pasar basah menggunakan reaktor kelompok urutan (SBR). Sampel air basuhan diambil dari pasar basah (Pasar Peladang, Skudai).Sebanyak 1L air basuhan telah dimasukkan ke dalam reaktor dengan jumlah isipadu total 4L. Nisbah tahap anoksik-aerobik ditentukan 30% -70% daripada jumlah masa total. 30 rpm pengaduk pencampuran dikekalkan pada awal setiap kitaran untuk mencapai tahap keadaan seragam. Influen dan efluen ditetapkan selama 30 minit. SBR telah dikendalikan dengan 3 kitaran / hari, suhu 30 ° C, masa kitaran 8 jam dan masa tahanan hidraulik (HRT) 1.2 hari. Pengudaraan pada 35 L/min telah dipasang untuk penukaran ammonia dan membantu nitrifikasi. Hasil kajian menunjukkan bahawa bakteria yang membiak dalam sistem anoksik / aerobik boleh menyingkir substrat organik dan nutrien. Tahap kecekapan maksimum penyingkiran COD, Nitrogen Jumlah dan Fosforus masing-masing adalah pada kadar 94%, 88% dan 70%. Fasa anaerobik-aerobik-Anoxic dicadangkan untuk meningkatkan peratusan penyingkiran.

 

Kata kunci: Sistem SBR, penyingkiran nutrien, air basuhan, masa tahanan hidraulik, permintaan oksigen kimia

 

References

1.       Watkins, K. (2006). Human Development Report 2006 - Beyond scarcity: Power, poverty and the global water crisis. UNDP Human Development Reports (2006).

2.       Eriksson, E., Auffarth, K., Henze, M. and Ledin, A. (2002). Characteristics of grey wastewater. Urban Water, 4(1): 85 – 104.

3.       Ghunmi, L. A., Zeeman, G., Fayyad, M. and van Lier, J. B. (2011). Grey water treatment systems: A review. Critical Reviews in Environmental Science and Technology, 41(7), 657 – 698.

4.       Lamine, M., Bousselmi, L. and Ghrabi, A. (2007). Biological treatment of grey water using sequencing batch reactor. Desalination215(1): 127 – 132.

5.       Keough, N., Smira, S. and Benjamin, S. (2010). Lessons from a participatory approach to household greywater use in Jordan. In: Greywater Use in the Middle East, McIlwaine and Redwood (eds). IDRC.

6.       Burnat, J. and Eshtayah, I. (2010). On-site grey water treatment in Qebi a Village, Palestine: Grey Water Use in the Middle East. 17.

7.       Allen, L., Christian-Smith, J. and Palaniappan, M. (2010). Overview of greywater reuse: The potential of greywater systems to aid sustainable water management. Pacific Insfitute, November 2010, www. pacinst. org.

8.       Karpiscak, M.M., Kennith, E. F. and Nancy, S. (1990) "Residential Water Conservation: Casa Del Aguai, 939 – 948.

9.       Surendran, S. and Wheatley, A. D. (1998). Greywater reclamation for nonpotable reuse. Water and Environment Journal, 12(6): 406 – 413.

10.    Okun, D. A. (1997). Distributing reclaimed water through dual systems. Journal-American Water Works Association, 89(11): 52 – 64.

11.    Santala, E., Uotila, J., Zaitsev, G., Alasiurua, R., Tikka, R. and Tengvall, J. (1998). Microbiological greywater treatment and recycling in an apartment building. AWT98-Advanced Wastewater Treatment, Recycling and Reuse: Milan, 14 – 16.

12.    Otterpohl, R., Albold, A. and Oldenburg, M. (1999). Source control in urban sanitation and waste management: Ten systems with reuse of resources. Water Science and Technology, 39(5): 153 – 160.

13.    Gulyas, H. (2007). Greywater reuse–Concepts, benefits, risks and treatment technologies. In International Conference on Sustainable Sanitation–Food and Water Security for Latin America, Fortaleza, Ceará, Brazil.

14.    Gorton, M., Sauer, J. and Supatpongkul, P. (2011). Wet markets, supermarkets and the “big middle” for food retailing in developing countries: evidence from Thailand. World Development, 39(9): 1624 – 1637.

15.    Metcalf and Eddy. (1991). Wastewater Engineering: Treatment, Disposal, and Reuse. G. Tchobanoglous and F. L. Burton (Eds.). McGraw-Hill.

16.    U.S.EPA (1999). Wastewater, Technology Fact Sheet: Sequencing Batch Reactors, U.S Environmental Protection Agency, Office of Water, Washington, D.C., EPA 932-F-99-037.

17.    Hernandez, L., Zeeman, G., Temmink, H., and Buisman, C. (2007). Characterization and biological treatment of grey water. Water Science and Technology, 56: 193 – 200.

18.    Akunna, J. and Shepherd, W. (2001) Comparison of RBC and SBR systems for the treatment of sewage from small communities. Water and Environment Journal, 15: 147 – 151.

19.    Puig, S., Coraminas, Ll., Balaguer, M.D. and Colprim, J. (2007) Biological nutrient removal by applying SBR technology in small wastewater treatment plants: carbon source and C/N/P ratios effect. Water Science and Technology, 55(7), 135 – 141.

20.    Hauschild, K., Leverenz, H. L. and Darby, J. L (2010) Development of Design Criteria for Denitrifying Treatment Wetlands. Water Environment Research Foundation (WERF) 3 – 11.

21.    Nutrient Removal: WEF Manual of Practice (2005) No. 34. McGraw Hill Professional.




Previous                    Content                    Next