Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 713 - 725

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-03

 

 

 

PREPARATION AND CHARACTERIZATION OF Cu-Fe/TiO2 PHOTOCATALYST FOR VISIBLE LIGHT DEEP DESULFURIZATION

 

(Penyediaan dan Pencirian Fotokatalis Cu-Fe/TiO2 untuk Proses Nyahsulfur Di Bawah Cahaya Tampak)

 

Hayyiratul Fatimah Mohd Zaid1, Chong Fai Kait1*, Mohamed Ibrahim Abdul Mutalib2

 

1Department of Fundamental & Applied Sciences

2Department of Chemical Engineering

Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak., Malaysia

 

*Corresponding author: chongfaikait@petronas.com.my

 

 

Received: 17 August 2015; Accepted: 23 May 2016

 

 

Abstract

A photooxidative system for deep desulfurization of model diesel fuel was explored. Nanoparticles of anatase titania (TiO2) were synthesized via sol-gel hydrothermal method. The TiO2 was further modified with bimetallic Cu-Fe using wet-impregnation method followed by calcination process in order to extend the activity region of the photocatalyst to visible-light. A series of bimetallic 2.2 wt% Cu-Fe/TiO2 photocatalysts with different Cu:Fe mass compositions were characterized for their physical, chemical and optical properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy (DR-UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer–Emmett–Teller (BET) surface area analysis. The performance of the photocatalysts was evaluated for photooxidation of dibenzothiophene (DBT) as the sulfur species from model oil in the presence of hydrogen peroxide, H2O2 under 500 W visible light illumination. The highest sulfur conversion of 82.36 % was observed for photocatalyst with 10:1 Cu:Fe mass composition.

 

Keywords: photocatalyst, titania, oxidation, desulfurization, visible light, copper-iron

 

Abstrak

Sistem fotopengoksidaan untuk proses nyahsulfur daripada model minyak diesel dikaji. Nanopartikel titania (TiO2) dengan fasa anatas disediakan menggunakan kaedah hidrotermal sol-gel. Pengubahsuaian dengan dwilogam Cu-Fe dilakukan terhadap TiO2 menggunakan kaedah impregnasi basah diikuti dengan proses pengkalsinan untuk melanjutkan aktiviti fotokatalis ke bahagian cahaya tampak. Siri fotokatalis dwilogam 2.2 wt% Cu-Fe/TiO2 dengan komposisi jisim Cu:Fe yang berlainan dicirikan untuk menentukan sifat-sifat fizikal, kimia dan optik menggunakan pembelauan sinar-X (XRD), pemancaran medan mikroskopi imbasan elektron (FESEM), mikroskopi transmisi elecktron beresolusi tinggi (HRTEM), spektroskopi pantulan resapan ultraungu-tampak (DR-UV-Vis), spektroskopi transformasi Fourier inframerah (FTIR) dan analisis luas permukaan Brunauer–Emmett–Teller (BET). Kajian terhadap fotopengoksidaan dibenzothiophene (DBT) sebagai spesis sulfur di dalam model minyak menggunakan fotokatalis tersebut dilakukan dalam kehadiran hidrogen peroksida, H2O2 di bawah sinaran cahaya tampak 500 W. Prestasi tertinggi penukaran sulfur yang tercapai adalah 82.36 %, daripada fotokatalis yang mempunyai komposisi jisim untuk Cu:Fe sebanyak 10:1.

 

Kata kunci: fotokatalis, titania, pengoksidaan, nyahsulfur, cahaya tampak, kuprum-besi

 

References

1.       Srivastava, V. C. (2012). An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Advances, 2: 759 – 783.

2.       Zhang, J., Zhao, D. S. and Wang, J. L. (2009). Photocatalytic oxidation of dibenzothiophene using TiO2/bamboo charcoal. Journal of Materials Science, 44: 3112 – 3117.

3.       Maricq, M. M., Chase, R. E., Xu, N. and Laing, P. M. (2002). The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: Light duty diesel vehicles. Environmental Science & Technology, 36: 283 – 289.

4.       Campos-Martin, J. M., Capel-Sanchez, M. C., Perez-Presas, P. and Fierro, J. L. G. (2010). Oxidative processes of desulfurization of liquid fuels. Journal of Chemical Technology and Biotechnology, 85: 879 - 890.

5.       Jiang, Z., Lu, H., Zhang, Y. and Li, C. (2011). Oxidative desulfurization of fuel oils. Chinese Journal of Catalysis, 32(5): 707 – 715.

6.       Lina, Y., Jian, L., Xingdong, Y., Shen, J. and Yutai, Q. (2007). One step non-hydrodesulfurization of fuel oil: catalyzed oxidation adsorption desulfurization over HPWA-SBA-15. Journal of Molecular Catalysis A: Chemical, 262: 114 – 118.

7.       Lu, H., Deng, C., Ren, W. and Yang, X. (2014).  Oxidative desulfurization of model diesel using [(C4H9)4N]6Mo7O24 as a catalyst in ionic liquids. Fuel Process Technology, 119: 87 – 91.

8.       Ban, L. L., Liu, P., Ma, C. H. and Dai, B. (2013). Deep extractive desulfurization of diesel fuel by FeCl3/ionic liquids. Chinese Chemistry Letters, 24:755 – 758.

9.       Rodriguez-Cabo, B., Rodriguez, H., Rodil, E., Arce, A. and Soto, A. (2014).  Extractive and oxidative–extractive desulfurization of fuel with ionic liquids. Fuel, 117: 882 – 889.

10.    Li, W. L., Tang, H., Liu, Q., Xing, J., Li, Q., Wang, D., Yang, M., Li, X. and Liu, H. (2009). Deep desulfurization of diesel by integrating adsorption and microbial method. Biochemical Engineering Journal, 44: 297 – 301.

11.    Kim, H., Ma, X., Zhou, A. and Song, C. (2006). Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism. Catalysis Today, 111:74 – 83.

12.    Dinamarca, M. A., Ibacache-Quiroga, C., Baeza, P., Galvez, S., Villarroel, M., Olivero, P. and Ojeda, J. (2010). Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption. Bioresource Technology, 101: 2375 – 2378.

13.    Fatemeh, D. D., Manouchehr, V. and Abed, A. Z. (2010). Biodesulfurization of dibenzothiophene by newly isolated rhodococcus erythropolis strain. Bioresource Technology, 101:1102 – 1105.

14.    Hirai, T., Ogawa, K. and Komasawa, I. (1996). Desulfurization process for dibenzothiophenes from light oil by photochemical reaction and liquid-liquid extraction.  Industrial and Engineering Chemical Research, 35: 586 – 589.

15.    Shiraishi, Y., Hirai, T. and Komasawa, I. (2002). TiO2-mediated photocatalytic desulfurization process for light oils using an organic two-phase system. Journal of Chemical Engineering of Japan, 35: 489 – 492.

16.    Huang, Y., Ho, W., Ai, Z., Song, X., Zhang, L. and Lee, S. (2009). Aerosol-assisted flow synthesis of B-doped, Ni doped and B–Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO. Applied Catalysis B, 89:398 – 405.

17.    Liu, G. Q., Jin, Z. G., Liu, X. X., Wang, T. and Liu, Z. F. (2006). Anatase TiO2 porous thin films prepared by sol-gel method using CTAB surfactant. Journal of Sol-Gel Science and Technology, 41: 49 – 55.

18.    Ibrahim, A., Xian, S. B. and Wei, Z. (2003). Desulfurization of FCC gasoline by solvent extraction and photooxidation. Petroleum Science and Technology, 21: 1555 – 1573.

19.    Zhao, D., Li, F., Han, J. and Li, H. (2007). Photochemical oxidation of thiophene by O2 in an organic two-phase liquid-liquid extraction system. Petroleum Chemistry, 47: 448 – 451.

20.    Shiraishi, Y., Hirai, T. and Komasawa, I. (1999). Identification of desulfurization products in the photochemical desulfurization process for benzothiophene and dibenzothiophene from light oil using an organic two-phase extraction system. Industrial and Engineering Chemical Research, 38: 3300 –3309.

21.    Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel and jet fuel. Catalysis Today, 86: 211 – 263.

22.    Matsuzawa, S., Tanaka, J., Sato, S. and Ibusuki, T. (2002). Photocatalytic oxidation of dibenzothiophene in acetonitrile using TiO2: effect of hydrogen peroxide and ultrasound irradiation. Journal of Photochemistry and Photobiology A, 149: 183 – 189.

23.    Shiraishi, Y., Hirai, T. and Komasawa, I. (2001). Photochemical desulfurization and denitrogenation process for vacuum gas oil using an organic two-phase extraction system. Industrial and Engineering Chemical Research, 40: 293 – 303.

24.    Liu, J, Zhang, Z, Yang, L, Zhang, Y, Deng S. (2011). The degradation of reactive black wastewater by Fe/Cu co-doped TiO2. International Journal of Chemistry, 3: 87 – 92.

25.    Zhang, D. (2010). Enhanced photocatalytic activity for titanium dioxide by commodification with copper and iron. Transition Metal Chemistry, 35: 933 – 938.

26.    Zaid, H. F. M., Chong, F. K. and Mutalib, M. I. A. (2014). Integrated photooxidative–extractive desulfurization system for fuel oil using Cu, Fe and Cu–Fe/TiO2 and eutectic based ionic liquids: effect of calcination temperature and duration. AIP Conference Proceedings, 1621: 231 – 237.

27.    Khan, M. A., Akhtar, M. S. and Yang, O. B. (2010). Synthesis, characterization and application of sol–gel derived mesoporous TiO2 nanoparticles for dye-sensitized solar cells. Sol Energy, 84: 2195 – 2201.

28.    Vijayalakshmi, R. and Rajendran, V.  (2012). Synthesis and characterization of nano-TiO2 via different methods. Archives Applied Science Research, 4:1183 – 1190.

29.    Kim, D. S. and Kwak, S. Y. (2007). The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Applied Catalysis A: General, 323: 110 – 118.

30.    Yu, J., Zhao, X. and Zhao, Q. (2000). Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method. Thin Solid Films, 379: 7 – 14.

31.    Wu, Y., Zhang, J., Xiao, L. and Chen, F. (2009). Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants. Applied Catalysis B: Environment, 88: 525 – 532.

32.    Yoong, L. S., Chong, F. K. and Dutta, B. K. (2009). Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy, 34: 1652 – 1661.

33.    Kim, A. Y. and Kang, M. (2012). Effect of Al-Cu bimetallic components in a TiO2 framework for high hydrogen production on methanol/water photo-splitting. International Journal of Photoenergy, 2012:1-9.

34.    Nurlaela, E., Chong, F. K., Dutta, B. K. and Riaz N. (2010). Bimetallic Cu–Ni/TiO2 as photocatalyst for hydrogen production from water. International Conference on Fundamental and Applied Sciences (ICFAS2010). Kuala Lumpur, Convention Center, KL.

35.    Zhu, J., Chen, F., Zhang, J., Chen, H. and Anpo, M. (2006).  Fe3+–TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. Journal of Photochemistry and Photobiology A: Chemistry, 180: 196 – 204.

36.    Lu, C. H., Wu, W. H. and Kale, R. B. (2008). Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders. Journal of Hazardous Materials, 154: 649 – 654

37.    Aeroxide and Aeroperl. (2005). Technical information (1243) for Aeroxide and Aeroperl titanium Dioxide as photocatalyst; Bulletin No. 1-1243-0:1-14.

38.    Li, D., Haneda, H., Hishita, S. and Ohashi, N. (2005). Visible-light driven nitrogen-doped TiO2 photocatalysis: Effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants. Materials Science and Engineering B, 52: 843 – 850.

39.    Yan, X., He, J., Evans, D. G., Zhu, Y. and Duan, X. (2004). Preparation, characterization and photocatalytic activity of TiO2 formed from mesoporous precursor. Journal of Porous Materials, 11:131 – 139.

40.    Fuerte, A., Hernandez-Alonso, M. D., Maira, A. J., Martinez-Arias, A., Fernandez-Garcia, M., Conesa, J. C., Soria, J. and Munuera, G. (2002). Nanosize Ti-W mixes oxides: Effect of doping level in the photocatalytic degradation of toluene using sunlight type excitation. Journal of Catalysis, 212: 1 – 9.

41.    Cao, H., Lin, X., Zhan, H., Zhang, H. and Lin J. (2013). Photocatalytic degradation kinetics and mechanism of phenobarbital in TiO2 aqueous solution. Chemosphere, 90: 1514 – 1519.

42.    Nahar, M. S., Hasegawa, K. and Kagaya, S. (2006). Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere, 65: 1976 – 1982.

43.    Li, H., Zhang, Y., Wang, S., Wu, Q. and Liu, C. (2009). Study on nanomagnets supported TiO2 photocatalysts prepared by a sol–gel process in reverse microemulsion combining with solvent-thermal technique. Journal of Hazardous Materials, 169: 1045 – 1053.

44.    Murphy, A. B. (2007). Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical watersplitting. Solar Energy Materials Solar Cells, 91: 1326 – 1337.

45.    Wu, D., Long, M., Cai, W., Chen, C. and Wu, Y. (2010). Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity. Journal of Alloys and Compounds, 502: 289 – 294.

46.    Yalçin, Y., Kiliç, M. and Çinar, Z. (2010). Fe+3-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity. Applied Catalysis B: Environment, 99: 469 – 477.

47.    Singto, S., Sorapong, P., Yoshikazu, S. and Susumu, Y. (2005). Photocatalytic activity of titania nanocrystals prepared by surfactant-assisted templating method - Effect of calcination conditions. Materials Letters, 59: 2965 – 2968.

 

 




Previous                    Content                    Next