Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 1112 - 1122

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-17

 

 

 

THERMAL CHARACTERISTICS OF MICROCRYSTALLINE CELLULOSE FROM OIL PALM BIOMASS

 

(Sifat Terma Mikrokristal Selulosa Daripada Biojisim Tandan Kosong Sawit)

 

Fatin Afifah Ahmad Kuthi1, Nor Rabbi’atul ‘Adawiyah Norzali1, Khairiah Haji Badri1,2*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology

2Polymer Research Center, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: kaybadri@ukm.edu.my

 

 

Received: 10 June 2015; Accepted: 21 July 2016

 

 

Abstract

Extracted cellulose from oil palm empty fruit bunch fiber (OPEFB) was subjected to acid hydrolysis in producing microcrystalline cellulose (MCC). The acid hydrolysis was conducted using 1 % (v/v) sulfuric acid (H2SO4) at varying temperatures of 120, 130 and 140 °C for an hour. The relationship between the thermal behavior and physical properties was investigated by thermogravimety (TGA/DTG) and differential scanning calorimetry (DSC) as well as x-ray diffractometry (XRD). The hydrolyzed MCC at 120 °C (MCCA) showed the highest thermal stability temperature and percentage of crystallinity at 250 °C and 65.07% respectively. However, hydrolyzed MCC at 130 °C (MCCB) and 140 °C (MCCC) exhibited low thermal stability temperature at 225 °C and 220 °C respectively. The percentage of crystallinity obtained for MCCB and MCCC was 61.18% and 60.64% respectively. This study revealed that the degree of crystallinity for cellulose has positive impact on the thermal degradation temperature of the OPEFB-MCC.

 

Keywords:  acid hydrolysis, microcrystalline cellulose, oil palm empty fruit bunch, thermal behavior

 

Abstrak

Selulosa yang diestrak dari serabut tandan kosong sawit (STKS) dihidrolisis menggunakan asid bagi menghasilkan mikrokristal selulosa (MKS). Hidrolisis berasid dijalankan dengan menggunakan 1 % (v/v) asid sulfurik (H2SO4) pada suhu yang divariasikan iaitu 120, 130 dan 140 °C selama sejam. Hubungan antara sifat terma dan sifat fizikal dikaji berdasarkan analisis termogravimetri (TGA/DTG), anlisis kalorimetri imbasan kebezaan (DSC) serta kaedah pembelauan sinar-X (XRD). Peningkatan suhu hidrolisis menunjukkan kesan yang kontra terhadap sifat terma STKS-MKS. MKS yang dihidrolisis pada suhu 120 °C (MKSA) menunjukkan suhu kestabilan terma dan peratus kehabluran yang paling tinggi iaitu masing-masing pada 250 °C dan 65.07%. MKS yang dihdrolisis pada 130 °C (MKSB) dan 140 °C (MKSC) mempamerkan suhu kestabilan terma yang rendah iaitu masing masing pada suhu 225 °C dan 220 °C. Peratus kehabluran yang diperoleh bagi MKSB dan MKSC masing-masing adalah 61.18% dan 60.64%. Kajian ini memberi indikasi bahawa darjah kehabluran selulosa memberi kesan positif kepada suhu degradasi terma TKKS-MKS.

 

Kata kunci:  hidrolisis berasid, mikrokristal selulosa,  serabut tandan kosng kelapa sawit, sifat terma

 

References

1.       Sreekala, M. S., Kumaran, M. G. and Thomas, S. (1997). Oil palm fibers: Morphology, chemical composition, surface modification and mechanical properties. Journal of Applied Polymer Science, 66: 821 – 835.

2.       Law, K. N., Daud, W. R. W. and Ghazali, A. (2007). Morphological and chemical mature of fibers strands of oil empty fruit bunch (OPEFB). Bioresources, 2(3): 352 – 362.

3.       Abdul Khalil, H. P. S., Alwani, M. S., Ridzuan, R., Kamarudin, H. and Khairul, A. (2008). Chemical composition, morphological characteristic and cell wall structure of Malaysian oil palm fibers. Polymer-Plastics Technology and Engineering, 47: 273 – 280.

4.       Kuthi, F. A. A. and Badri, K. (2014). Effect of cooking temperature on the crystallinity of acid hydrolysed-oil palm cellulose. AIP Conference Proceedings, 1614: 456 – 462.

5.       Kobayashi, H. and Fukuoka, A. (2013). Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chemistry, 5(7): 1740 – 1763.

6.       Rowell, R. M., Pettersen, R., Han, J. S., Rowell, J. S. and Tshabalala, M.A. (2005). Cell wall chemistry, Rowell, R. M, Handbook of wood chemistry and wood composites, CRC Press, Florida.

7.       Azubuike, C. P. and Okhamafe, A. O. (2012). Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. International Journal of Recycling of Organic Waste in Agriculture, 1(9): 1 – 7.

8.       Frone, A. N., Panaitescu, D. M. and Donescu, D. (2011). Some aspects concerning the isolation of cellulose micro and nano-fibers. U.P.B. Scientific Bulletin, 73(2): 133 – 152.

9.       Nishiyama, Y. (2009). Structure and properties of the cellulose microfibril. Journal of Wood Science, 55: 241 – 249.

10.    Kuthi, F. A. A., Badri, K. dan Azman, M. A. (2014). X-ray diffraction patterns of oil palm empty fruit bunch fibers with varying crystallinity. Advanced Materials Research, 1087: 321 – 328.

11.    Haafiz, M. K. M., Hassan, A., Zakaria, Z. and Inuwa, I. M. (2014). Isolation and characterization of cellulose. Carbohydrate Polymers, 103: 119 – 125.

12.    Yuan, L., Wan, J., Ma, Y., Wang, Y., Huang, M. and Chen, Y. (2013). The content of different hydrogen bond models and crystal structure of Eucalyptus fibers during beating, BioResources, 8(1): 717 – 734.

13.    Kahar, P. (2013). Synergistic effects of pretreatment process on enzymatic digestion of rice straw for efficient ethanol fermentation, Petre, M., Environmental Biotechnology-New Approached Prospective Applications, InTech publisher: pp. 65.

14.    Adel, A. M., El-Wahab, Z. H., Ibrahim, A. A and Al-Shemy, M. T. (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydrate Polymers, 83: 676 – 687.

15.    Trache, D., Donnot, A., Khimeche, K., Benelmir, R. and Brosse, N. (2014). Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibers. Carbohydrate Polymers, 104: 223 – 230.

16.    Chauhan, R. S., Sapkal, V. S., Sapkal, V. S. and Zamre, G. S. (2009). Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries). Journal Chemical Sciences, 7(2): 681 – 688.

17.    Wyman, C. E. (2013). Introduction. aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, First Edition, Johm Wiley & Sons Ltd.: pp. 1-15.

18.    Adel, A. M., El-Wahab, Z. H., Ibrahim, A. A. and Al-Shemy, M. T. (2010). Characterization of microcrystalline cellulose prepared from lignocellulose materials, Part I: Acid hydrolysis. Bioresources Technology, 101: 4446 – 4455.

19.    Barneto, A. G., Carmona, J. A., Alfonso, J. E. and Serrano, R. S. (2010). Simulation of the thermogravimetry analysis of three non-wood pulps. Bioresources Technology, 101: 3220 – 3229.

20.    Anon. (1997). Alcohol-benzene solubility of pulp. TAPPI Testing Procedure (TAPPI T204 cm-97) USA.

21.    Browning, B. L. (1967). Methods of wood chemistry, J. Wiley and Sons, New York: pp. 394 – 396.

22.    Soom, R. M., Aziz, A. A., Hassan, W. H. W. and Top, A. G. M. (2009). Solid state characteristics of microcrystalline cellulose from oil palm empty fruit bunch fibre. Journal of Oil Palm Research, 21: 613 – 620.

23.    Nazir, M. S., Wahjoedi, B. A., Yussof, A.W. and Abdullah, M. A. (2013). Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. BioResources, 8: 2161 – 2172.

24.    Ciolacu, D., Ciolacu, F. and Popa,V. I. (2011). Amorphous cellulose- structure and characterization. Cellulose of Chemistry and Technology, 45: 13 – 21.

25.    Harun, N. A. F., Baharuddin, A. S., Zainudin, M. H. M, Bahrin, E. K., Naim, M. N. and Zakaria, R. (2013). Cellulose production from treated oil palm empty fruit bunch degradation by locally isolated Thermobifida fusca. Bioresources, 8(1): 676 – 687.

26.    Poletto, M., Zattera, A. J., Forte, M. M. C. and Santara, R. M. C. (2012). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109: 148 – 153.

27.    Poletto, M., Junior, H. L. O. and Zattera, A. J. (2014). Native cellulose: structure, characterization and thermal properties. Materials, 7: 6105 – 6119.

28.    Rojas, J. (2013). Effect of polymorphism on the particle and compaction properties of microcrystalline cellulose, InTech Open: pp. 27 – 46.

29.    Terinte, N., Ibbett, R. and Schuster, K. C. (2011). Overview on native cellulose and microcrystalline cellulose I structure studied by x-ray diffraction. Lenzinger Berichte, 89: 118 – 131.

30.    Haafiz, M. K. M., Eichhorn, S. J., Hassan, A. and Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue, Carbohydrate Polymers, 93: 628 – 634.

31.    Chan, C. H., Chia, C. H., Zakaria, Ahmad, S. I. and Dufresne, A. (2013). Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood. BioResources, 8: 785 – 794.

32.    Peng, Y., Gardner, D. J., Han, Y., Kiziltas, A., Cai, Z. and Tshabalala, M. A. (2013). Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose, 20(5): 2379 – 2392.

33.    Mandal, A. and Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86: 1291 – 1299.

 




Previous                    Content                    Next