Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 1129 - 1137

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-19

 

 

 

SYNTHESIS OF BIO-BASED HYDROGEL FROM EPOXIDIZED PALM OIL CATALYZED BY FLUOROANTIMONIC ACID HEXAHYDRATE

 

(Sintesis Hidrogel Berasaskan Bio Daripada Minyak Sawit Terepoksidasi Bermangkinkan Asid Fluoroantimonik Heksahidrat)

 

Wan Nurhayati Wan Tajulruddin, Abdul Razak Rahmat*, Rohah Abd Majid

 

Department of Polymer Engineering, Faculty of Chemical Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author: k-razak@cheme.utm.my

 

 

Received: 10 June 2015; Accepted: 21 July 2016

 

 

Abstract

An epoxidized palm oil-based hydrogel (HPEPO) was synthesized by using ring opening polymerization (ROP) in the presence of fluoroantimonic acid hexahydrate catalyst (HSbF6·6H2O), followed by chemical hydrolysis catalyzed with sodium hydroxide (NaOH). The structural characterization and thermal property of synthesized hydrogel were studied. The successful ring opening of EPO was confirmed by disappearing of epoxy functional group at 833 cm-1 in the Fourier transform infrared (FTIR) spectrum. The formation of HPEPO was detected at 2500 cm-1 to 3400 cm-1 which represents the O-H stretching of carboxylic acid. Based on nuclear magnetic resonance (NMR), the disappearance of epoxy ring group at 2.8 – 3.0 ppm has indicated the completely reacted oxirane ring with the presence of peak at 3.7 ppm corresponded to hydroxyl group. Meanwhile, HPEPO exhibited low thermal stability by having melting temperature around 45 °C to 60 °C in Differential scanning calorimetry (DSC) and as showed by the great percentage of weight loss in thermogravimetric analysis (TGA) curve. However, the formation of char residue was slow, probably due to the formation of hydrogen linkages in hydrogel.

 

Keywords:  hydrogel, epoxidized palm oil, ring opening polymerization, chemical hydrolysis

 

Abstrak

Hidrogel berasaskan minyak sawit terepoksidasi (HPEPO) telah disintesis menggunakan polimerisasi pembukaan cincin (ROP) dengan kehadiran asid fluoroantimonik heksahidrat (HSbF6.6H2O) sebagai pemangkin, diikuti dengan hidrolisis kimia yang dimangkinkan oleh natrium hidroksida (NaOH). Pencirian struktur dan sifat termal hidrogel yang disintesis telah dikaji. Kejayaan pembukaan cincin minyak sawit terepoksidasi (EPO) telah disahkan melalui kehilangan kumpulan berfungsi epoksi pada 833 cm-1 dalam spektrum Fourier inframerah (FTIR). Pembentukan HPEPO dikesan pada 2500 cm-1 hingga 3400 cm-1 yang mewakili regangan O-H daripada asid karboksilik. Merujuk kepada resonans magnetik nuklear, kehilangan cincin epoksi pada 2.8 – 3.0 ppm menunjukkan cincin oksiran telah bertindakbalas sepenuhnya dengan kewujudan puncak pada 3.7 ppm sepadan dengan kumpulan hidroksil. Sementara itu, HPEPO telah mempamerkan kestabilan haba yang rendah dengan mempunyai suhu lebur antara 45 °C to 60 °C daripada kalorimetri pengimbasan pembezaan (DSC) dan seperti yang ditunjukkan dalam kehilangan peratusan berat yang besar melalui lengkung analisis Termogravimetri (TGA). Walau bagaimanapun, pembentukan sisa arang didapati perlahan, berkemungkinan disebabkan oleh pembentukan ikatan hidrogen dalam hidrogel.

 

Kata kunci:  hidrogel, minyak sawit terepoksidasi, polimerisasi pembukaan cincin, hidrolisis kimia

 

References

1.       Michael, A. R. M., Jurgen, O. M. and Ulrich, S. S. (2007). Plant oil renewable resources as green alternatives in polymer sciences. Chemical Society Reviews, 36: 1788 – 1802.

2.       Seniha, G. F., Yusuf, Y. A. and Tuncer, E. (2006). Polymer from triglyceride oils. Progress in Polymer Science, 31: 633 – 670.

3.       Petrovic, Z. S., Zlatanic, A., Lava, C. C. and Sinadinovic-Fiser, S. (2002). Epoxidation of soybean oil in toluene with peroxy acetic and peroxy formic acids-kinetics and side reactions. European Journal of Lipid Science and Technology, 104: 293 – 299.

4.       Okieimen, F.E., Bakare, O.I., and Okieimen, C.O. (2002). Studies of epoxidation of rubber seed oil. Industrial Crops and Products, 15: 139 – 144.

5.       Milchert, E. Smagowicz, A. and Lewandowski, G. (2010). Optimization of the reaction parameters of epoxidation of rapeseed oil with peracetic acid. Journal Chemical Technology and Biotechnology, 85:1099 – 1107.

6.       Vinay, S. and Kundu, P. P. (2006). Addition polymers from natural oils – A review. Progress in Polymer Science, 31: 983 – 100.

7.       Clark, A. J. and Hoong, S. S. (2013). Copolymers of tetrahydrofuran and epoxidized vegetable oils: Application to elastomeric polyurethanes. Polymer Chemistry, 5(9): 3238 – 3244.

8.       Yahaya, S. M., Mohd, A. F. and Mohamed, R. (2013). Synthesis and characterization of palm oil based polyol. Advance Materials Research, 812: 275 280.

9.       Ang, K. P., Lee, C. S., Cheng, S. F. and Chuah, C. H. (2013). Synthesis of palm-oil based polyester polyol for polyurethane adhesive production. Journal of Applied Polymer Science, 131: 1 – 8.

10.    Hoare, T. R. and Kohane, D. S. (2008). Hydrogel in drug delivery: progress and challenges. Polymer, 49: 1993 – 2007.

11.    Liu, Z. S. and Erhan, S. Z. (2010). Ring-opening polymerization of epoxidized soybean oil. Journal of Americal Oil Chemical Society, 87: 437 – 444.

12.    Denisov, G. S., Mavri, J. and Sobczyk, L. (2006). Potential energy shape for the proton motion in hydrogen bond reflected in Infrared and NMR spectra. The Netherlands : Springer – Dordrecht.

13.    Zhang, L., Huang, M., Yu, R., Huang, J., Dong, X., Zhang, R. and Zhu, J. (2014). Bio-based shape memory polyurethanes (Bio-SMPUs) with short side chains in the soft segment. Journal of Materials Chemistry A, 2(29): 11490 – 11498.

14.    Rashmi, B. J.  Rusu, D.  Prashantha, K.  Lacrampe, M. F. and  Krawczak, P. (2013). Development of bio-based thermoplastic polyurethanes formulations using corn-derived chain extender for reactive rotational molding. Express Polymer Letters, 7 (10): 852 – 862.

15.    Wang, R. and Schuman, T. P. (2013). Vegetable oil-derived epoxy monomers and polymer blends: A comparative study with review. Express Polymer Letters, 7(3) : 272 – 292.

16.    Souza, A. G. D., Santos, J. C. O., Conceição, M. M., Silva, M. C. D. and Prasad, S. (2004). A thermoanalytic and kinetic study of sunflower oil. Brazilian Journal of Chemical Engineering, 21: 265 – 273.

17.    Vashist, A., Shahabuddin, S., Gupta, Y. K. and Ahmad, S. (2013). Polyol induced interpenetrating networks: chitosan-metylmethacrylate based biocompatible and pH responsive hydrogels for drug delivery system. Journal of Materials Chemistry B. 1: 168 – 178.

 




Previous                    Content                    Next