Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1397 - 1404

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-19

 

 

 

Ba-SAPO-34 ZEOLITE MEMBRANE FOR CO2 AND N2 PERMEATION

 

(Resapan Gas CO2 dan N2 Melalui Membran Zeolit Ba-SAPO-34)

 

Thiam Leng Chew1*, Jun Wei Lim2, Abdul Latif Ahmad3

 

1Department of Chemical Engineering, Faculty of Engineering

2Department of Fundamental and Applied Sciences

Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Malaysia

3School of Chemical Engineering, Engineering Campus,

Universiti Sains Malaysia, 14300 Penang, Malaysia

 

*Corresponding author: thiamleng.chew@utp.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Membrane separation technology is gaining importance nowadays in reducing the emission of carbon dioxide (CO2) as greenhouse gas due to the global climate change. Gas permeation studies play significant role in reflecting the potential of the membranes in separating the gas mixtures. In this study, Ba-SAPO-34 zeolite membrane was formed by membrane synthesis process using microwave (MW) heating and followed by membrane ion-exchange process with Ba2+ cation. The Ba-SAPO-34 zeolite membrane was investigated for its performance in the CO2 and N2 gases permeation studies. The effects of permeation temperature (30 – 180 oC) and pressure difference (100 – 500 kPa) across the membrane on the gas permeation performance of the Ba-SAPO-34 membrane were studied. CO2 single permeance of ~9.4-19.5 x 10-8 mol/m2.s.Pa and N2 single permeance of ~0.635-0.694 x 10-8 mol/m2.s.Pa were obtained for gases permeation through Ba-SAPO-34 membrane performed under the range of permeation temperature and pressure difference across the membrane studied. Maximum CO2/N2 ideal selectivity of 29.6 was obtained for gases permeation through Ba-SAPO-34 membrane at 30 oC and 100 kPa pressure difference.

 

Keywords:  Ba-SAPO-34, membrane, gas permeation

 

Abstrak

Teknologi membran pemisahan adalah semakin penting pada masa kini dalam mengurangkan pelepasan karbon dioksida (CO2) sebagai gas rumah hijau disebabkan oleh perubahan iklim sejagat. Kajian resapan gas memainkan peranan yang penting dalam mencerminkan potensi membran dalam pemisahan campuran gas. Dalam kajian ini, membrane zeolit Ba-SAPO-34 telah dibentuk melalui proses sintesis membran dengan menggunakan pemanasan gelombang mikro dan diikuti oleh proses pertukaran ion membran dengan kation Ba2+. Membran zeolit Ba-SAPO-34 tersebut telah dikaji untuk prestasinya dalam kajian resapan gas CO2 dan N2. Kesan suhu resapan (30 – 180 oC) dan perbezaan tekanan (100 – 500 kPa) merentasi membrane terhadap prestasi resapan gas membrane Ba-SAPO-34 telah dikaji. Ketelapan tunggal CO2 sebanyak ~9.4-19.5 x 10-8 mol/m2.s.Pa dan ketelapan tunggal N2 sebanyak ~0.635-0.694 x 10-8 mol/m2.s.Pa telah diperolehi bagi resapan gas melalui membran Ba-SAPO-34 di bawah julat suhu resapan dan perbezaan tekanan merentasi membran yang dikaji. Kememilihan CO2/N2 sebanyak 29.6 (maksimum) telah diperolehi bagi resapan gas melalui membran Ba-SAPO-34 pada 30 oC dan perbezaaan suhu sebanyak 100 kPa.

 

Kata kunci:  Ba-SAPO-34, membran, resapan gas

 

References

1.       Bredesen, R., Jordal, K. and Bolland, O. (2004). High-temperature membranes in power generation with CO2 capture. Chemical Engineering and Processing, 43: 1129 – 1158.

2.       Favre, E. (2007). Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? Journal of Membrane Science, 294: 50 – 59.

3.       Granite, E. J. and O'Brien, T. (2005). Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology, 86: 1423 – 1434.

4.       Lin, H. and Freeman, B. D. (2005). Materials selection guidelines for membranes that remove CO2 from gas mixtures. Journal of Molecular Structure, 739: 57 – 74.

5.       Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A. E. and Wright, I. (2008). Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20: 14 – 27.

6.       Li, S. and Fan, C.Q. (2010). High-flux SAPO-34 membrane for CO2/N2 separation. Industrial and Engineering Chemistry Research, 49: 4399 – 4404.

7.       Lu, G.Q., Diniz da Costa, J. C., Duke, M., Giessler, S., Socolow, R., Williams, R. H. and Kreutz, T. (2007). Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid Interface Science, 314: 589 –  603.

8.       Gray, M. L., Soong, Y., Champagne, K. J., Pennline, H., Baltrus, J. P., Stevens Jr, R.W., Khatri, R., Chuang, S. S. C. and Filburn, T. (2005). Improved immobilized carbon dioxide capture sorbents. Fuel Processing Technology, 86: 1449 – 1455.

9.       Zheng, F., Tran, D. N., Busche, B. J., Fryxell, G. E., Addleman, R. S., Zemanian, T. S. and Aardahl, C. L. (2005). Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Industrial and Engineering Chemistry Research, 44: 3099 – 3105.

10.    Fang, M., Wu, C., Yang, Z., Wang, T., Xia, Y. and Li, J. (2015). ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation. Journal of Membrane Science, 474: 103 – 113.

11.    Shirazian, S. and Ashrafizadeh, S. N. (2015). LTA and ion-exchanged LTA zeolite membranes for dehydration of natural gas. Journal of Industrial and Engineering Chemistry, 22: 132 – 137.

12.    Wu, T., Wang, B., Lu, Z., Zhou, R. and Chen, X. (2014). Alumina-supported AlPO-18 membranes for CO2/CH4 separation. Journal of Membrane Science, 471: 338 – 346.

13.    Lee, I. and Jeong, H.-K. (2011). Synthesis and gas permeation properties of highly b-oriented MFI silicalite-1 thin membranes with controlled microstructure. Microporous and Mesoporous Material, 141: 175 – 183.

14.    Michalkiewicz, B. and Koren, Z. C. (2015). Zeolite membranes for hydrogen production from natural gas: State of the art. Journal of Porous Materials, 22: 635 – 646.

15.    Das, N., Kundu, D. and Chatterjee, M. (2010). The effect of intermediate layer on synthesis and gas permeation properties of NaA zeolite membrane. Journal of Coatings Technology and Research, 7: 383 – 390.

16.    Himeno, S., Tomita, T., Suzuki, K., Nakayama, K., Yajima, K. and Yoshida, S. (2007). Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Industrial and Engineering Chemistry Research, 46: 6989 – 6997.

17.    Li, S., Zong, Z., James Zhou, S., Huang, Y., Song, Z., Feng, X., Zhou, R., Meyer, H. S. and Carreon, M.A. (2015). SAPO-34 membranes for N2/CH4 separation: Preparation, characterization, separation performance and economic evaluation. Journal of Membrane Science, 487: 141 – 151.

18.    Sato, K., Sugimoto, K., Sekine, Y., Takada, M., Matsukata, M. and Nakane, T. (2007). Application of FAU-type zeolite membranes to vapor/gas separation under high pressure and high temperature up to 5 MPa and 180 °C. Microporous and Mesoporous Materials, 101: 312 – 318.

19.    Sebastián, V., Kumakiri, I., Bredesen, R. and Menéndez, M. (2007). Zeolite membrane for CO2 removal: Operating at high pressure. Journal of Membrane Science, 292: 92 – 97.

20.    Hong, M., Li, S., Falconer, J. L. and Noble, R. D. (2008). Hydrogen purification using a SAPO-34 membrane. Journal of Membrane Science, 307: 277 – 283.

21.    Tian, Y., Fan, L., Wang, Z., Qiu, S. and Zhu, G. (2009). Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO2/CH4 mixture. Journal of Material Chemistry, 19: 7698 – 7703.

22.    Motuzas, J., Julbe, A., Noble, R. D., van der Lee, A. and Beresnevicius, Z. J. (2006). Rapid synthesis of oriented silicalite-1 membranes by microwave-assisted hydrothermal treatment. Microporous and Mesoporous Materials, 92: 259 – 269.

23.    Li, Y. and Yang, W. (2008). Microwave synthesis of zeolite membranes: A review. Journal of Membrane Science, 316: 3 – 17.

24.    Zhu, G., Li, Y., Zhou, H., Liu, J. and Yang, W. (2008). FAU-type zeolite membranes synthesized by microwave assisted in situ crystallization. Material Letters, 62: 4357 – 4359.

25.    Chew, T., Ahmad, A. L. and Bhatia, S. (2011). Rapid synthesis of thin SAPO-34 membranes using microwave heating. Journal of Porous Materials, 18: 355 – 360.

26.    Chew, T. L., Ahmad, A. L. and Bhatia, S. (2011). Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation. Chemical Engineering Journal, 71: 1053 – 1059.

27.    Poshusta, J. C., Noble, R. D. and Falconer, J. L. (1999). Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. Journal of Membrane Science, 160: 115 – 125.

28.    Li, S., Falconer, J. L. and Noble, R. D. (2008). SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio. Microporous and Mesoporous Materials, 110: 310 – 317.

29.    Bernal, M. P., Coronas, J., Menéndez, M. and Santamaría, J. (2004). Separation of CO2/N2 mixtures using MFI-Type zeolite membranes. AIChE Journal, 50: 127 – 135.

 




Previous                    Content                    Next