Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1397 - 1404
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-19
Ba-SAPO-34
ZEOLITE MEMBRANE FOR CO2 AND N2 PERMEATION
(Resapan
Gas CO2 dan N2 Melalui Membran Zeolit Ba-SAPO-34)
Thiam Leng Chew1*,
Jun Wei Lim2, Abdul Latif Ahmad3
1Department of Chemical Engineering, Faculty of
Engineering
2Department of Fundamental and Applied Sciences
Universiti
Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Malaysia
3School of Chemical Engineering, Engineering Campus,
Universiti
Sains Malaysia, 14300 Penang, Malaysia
*Corresponding author: thiamleng.chew@utp.edu.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
Membrane separation technology is
gaining importance nowadays in reducing the emission of carbon dioxide (CO2)
as greenhouse gas due to the global climate change. Gas permeation studies play
significant role in reflecting the potential of the membranes in separating the
gas mixtures. In this study, Ba-SAPO-34 zeolite membrane was formed by membrane
synthesis process using microwave (MW) heating and followed by membrane
ion-exchange process with Ba2+ cation. The Ba-SAPO-34 zeolite
membrane was investigated for its performance in the CO2 and N2
gases permeation studies. The effects of permeation temperature (30 – 180 oC)
and pressure difference (100 – 500 kPa) across the membrane on the gas
permeation performance of the Ba-SAPO-34 membrane were studied. CO2
single permeance of ~9.4-19.5 x 10-8
mol/m2.s.Pa and N2 single permeance of ~0.635-0.694 x
10-8 mol/m2.s.Pa were
obtained for gases permeation through Ba-SAPO-34 membrane performed under the
range of permeation temperature and pressure difference across the
membrane studied. Maximum CO2/N2 ideal selectivity of
29.6 was obtained for gases permeation through Ba-SAPO-34 membrane at 30 oC
and 100 kPa pressure difference.
Keywords: Ba-SAPO-34, membrane, gas permeation
Abstrak
Teknologi membran
pemisahan adalah semakin penting pada masa kini dalam mengurangkan pelepasan
karbon dioksida (CO2) sebagai gas rumah hijau disebabkan oleh
perubahan iklim sejagat. Kajian resapan gas memainkan peranan yang penting
dalam mencerminkan potensi membran dalam pemisahan campuran gas. Dalam kajian
ini, membrane zeolit Ba-SAPO-34 telah dibentuk melalui proses sintesis membran
dengan menggunakan pemanasan gelombang mikro dan diikuti oleh proses pertukaran
ion membran dengan kation Ba2+. Membran zeolit Ba-SAPO-34 tersebut
telah dikaji untuk prestasinya dalam kajian resapan gas CO2 dan N2.
Kesan suhu resapan (30 – 180 oC) dan perbezaan tekanan (100 – 500
kPa) merentasi membrane terhadap prestasi resapan gas membrane Ba-SAPO-34 telah
dikaji. Ketelapan tunggal CO2 sebanyak ~9.4-19.5 x 10-8 mol/m2.s.Pa dan ketelapan tunggal N2
sebanyak ~0.635-0.694 x 10-8
mol/m2.s.Pa telah diperolehi bagi resapan gas melalui membran
Ba-SAPO-34 di bawah julat suhu resapan dan perbezaan tekanan merentasi membran
yang dikaji. Kememilihan CO2/N2 sebanyak 29.6 (maksimum)
telah diperolehi bagi resapan gas melalui membran Ba-SAPO-34 pada 30 oC
dan perbezaaan suhu sebanyak 100 kPa.
Kata
kunci: Ba-SAPO-34,
membran, resapan gas
References
1.
Bredesen, R., Jordal, K. and
Bolland, O. (2004). High-temperature membranes in power generation with CO2
capture. Chemical Engineering and
Processing, 43: 1129 – 1158.
2.
Favre, E. (2007). Carbon dioxide
recovery from post-combustion processes: Can gas permeation membranes compete
with absorption? Journal of Membrane
Science, 294: 50 – 59.
3.
Granite, E. J. and O'Brien, T.
(2005). Review of novel methods for carbon dioxide separation from flue and
fuel gases. Fuel Processing Technology,
86: 1423 – 1434.
4.
Lin, H. and Freeman, B. D. (2005).
Materials selection guidelines for membranes that remove CO2 from
gas mixtures. Journal of Molecular
Structure, 739: 57 – 74.
5.
Yang, H., Xu, Z., Fan, M., Gupta,
R., Slimane, R. B., Bland, A. E. and Wright, I. (2008). Progress in carbon
dioxide separation and capture: A review. Journal
of Environmental Sciences, 20: 14 – 27.
6.
Li, S. and Fan, C.Q. (2010).
High-flux SAPO-34 membrane for CO2/N2 separation. Industrial and Engineering Chemistry
Research, 49: 4399 – 4404.
7.
Lu, G.Q., Diniz da Costa, J. C.,
Duke, M., Giessler, S., Socolow, R., Williams, R. H. and Kreutz, T. (2007).
Inorganic membranes for hydrogen production and purification: A critical review
and perspective. Journal of Colloid
Interface Science, 314: 589 – 603.
8.
Gray, M. L., Soong, Y., Champagne,
K. J., Pennline, H., Baltrus, J. P., Stevens Jr, R.W., Khatri, R., Chuang, S.
S. C. and Filburn, T. (2005). Improved immobilized carbon dioxide capture
sorbents. Fuel Processing Technology,
86: 1449 – 1455.
9.
Zheng, F., Tran, D. N., Busche, B.
J., Fryxell, G. E., Addleman, R. S., Zemanian, T. S. and Aardahl, C. L. (2005).
Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Industrial and Engineering Chemistry
Research, 44: 3099 – 3105.
10.
Fang,
M., Wu, C., Yang, Z., Wang, T., Xia, Y. and Li, J. (2015). ZIF-8/PDMS mixed
matrix membranes for propane/nitrogen mixture separation: Experimental result
and permeation model validation. Journal
of Membrane Science, 474: 103 – 113.
11.
Shirazian,
S. and Ashrafizadeh, S. N. (2015). LTA and ion-exchanged LTA zeolite membranes
for dehydration of natural gas. Journal
of Industrial and Engineering Chemistry, 22: 132 – 137.
12.
Wu,
T., Wang, B., Lu, Z., Zhou, R. and Chen, X. (2014). Alumina-supported AlPO-18
membranes for CO2/CH4 separation. Journal of Membrane Science, 471: 338 – 346.
13.
Lee, I. and Jeong, H.-K. (2011).
Synthesis and gas permeation properties of highly b-oriented MFI silicalite-1
thin membranes with controlled microstructure. Microporous and Mesoporous Material, 141: 175 – 183.
14.
Michalkiewicz,
B. and Koren, Z. C. (2015). Zeolite membranes for hydrogen production from
natural gas: State of the art. Journal of
Porous Materials, 22: 635 – 646.
15.
Das, N., Kundu, D. and Chatterjee,
M. (2010). The effect of intermediate layer on synthesis and gas permeation
properties of NaA zeolite membrane. Journal
of Coatings Technology and Research, 7: 383 – 390.
16.
Himeno, S., Tomita, T., Suzuki, K., Nakayama, K.,
Yajima, K. and Yoshida, S. (2007). Synthesis and permeation properties of a DDR-type zeolite membrane for
separation of CO2/CH4 gaseous mixtures. Industrial and Engineering Chemistry Research, 46: 6989 –
6997.
17.
Li,
S., Zong, Z., James Zhou, S., Huang, Y., Song, Z., Feng, X., Zhou, R., Meyer,
H. S. and Carreon, M.A. (2015). SAPO-34 membranes for N2/CH4
separation: Preparation, characterization, separation performance and economic
evaluation. Journal of Membrane Science,
487: 141 – 151.
18.
Sato, K., Sugimoto, K., Sekine, Y., Takada, M.,
Matsukata, M. and Nakane, T. (2007). Application of FAU-type zeolite membranes to vapor/gas separation under high
pressure and high temperature up to 5 MPa and 180 °C. Microporous and Mesoporous Materials,
101: 312 – 318.
19.
Sebastián, V., Kumakiri, I.,
Bredesen, R. and Menéndez, M. (2007). Zeolite membrane for CO2
removal: Operating at high pressure. Journal
of Membrane Science, 292: 92 – 97.
20.
Hong, M., Li, S., Falconer, J. L.
and Noble, R. D. (2008). Hydrogen purification using a SAPO-34 membrane. Journal of Membrane Science, 307: 277 –
283.
21.
Tian, Y., Fan, L., Wang, Z., Qiu, S. and Zhu, G. (2009).
Synthesis of a SAPO-34 membrane on
macroporous supports for high permeance separation of a CO2/CH4
mixture. Journal of Material Chemistry,
19: 7698 – 7703.
22.
Motuzas, J., Julbe, A., Noble, R.
D., van der Lee, A. and Beresnevicius, Z. J. (2006). Rapid synthesis of
oriented silicalite-1 membranes by microwave-assisted hydrothermal treatment. Microporous and Mesoporous Materials,
92: 259 – 269.
23.
Li, Y. and Yang, W. (2008).
Microwave synthesis of zeolite membranes: A review. Journal of Membrane Science, 316: 3 – 17.
24.
Zhu, G., Li, Y., Zhou, H., Liu, J.
and Yang, W. (2008). FAU-type zeolite membranes synthesized by microwave
assisted in situ crystallization. Material
Letters, 62: 4357 – 4359.
25.
Chew, T., Ahmad, A. L. and Bhatia,
S. (2011). Rapid synthesis of thin SAPO-34 membranes using microwave heating. Journal of Porous Materials, 18: 355 – 360.
26.
Chew, T. L., Ahmad, A. L. and Bhatia, S. (2011). Ba-SAPO-34 membrane
synthesized from microwave heating and its performance for CO2/CH4
gas separation. Chemical Engineering
Journal, 71: 1053 – 1059.
27.
Poshusta, J. C., Noble, R. D. and
Falconer, J. L. (1999). Temperature and pressure effects on CO2 and
CH4 permeation through MFI zeolite membranes. Journal of Membrane Science, 160: 115 – 125.
28.
Li, S., Falconer, J. L. and Noble,
R. D. (2008). SAPO-34 membranes for CO2/CH4 separations:
Effect of Si/Al ratio. Microporous and
Mesoporous Materials, 110: 310 – 317.
29.
Bernal, M. P., Coronas, J., Menéndez, M. and Santamaría,
J. (2004). Separation of CO2/N2
mixtures using MFI-Type zeolite membranes. AIChE
Journal, 50: 127 – 135.