Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1447 - 1457
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-25
PHYSICO-CHEMICAL AND
BIOLOGICAL CHANGES DURING CO-COMPOSTING OF MODEL KITCHEN WASTE, RICE BRAN AND
DRIED LEAVES WITH DIFFERENT MICROBIAL INOCULANTS
(Perubahan
Fiziko-Kimia
dan Biologi dalam Pengkomposan Bersama Sisa Dapur,
Dedak Padi
dan Daun Kering
dengan Mikrob
Inokulan Yang Berbeza)
Yee Van
Fan1, Chew Tin Lee1*, Chee Woh Leow1, Lee Suan
Chua2, Mohamad Roji Sarmidi2
1Faculty of Chemical and Energy Engineering
2Institute of Bioproduct Development
Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor. Malaysia
*Corresponding author: ctlee@utm.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
Disposal of food
waste either by land-filling or
incineration will cause environmental pollution and engaged in high treatment costs. Composting can be a
viable food waste management, however, less research works has focused on the degradation of small scale kitchen waste. In
this study, co-composting of model kitchen waste, dried leaves and rice bran
were inoculated with four different sources of
microbial inoculants (MI) namely commercial Effective Microorganism (EM), Tempeh, Tapai, a mixture of Tempeh
and Tapai
and water as a control. It was
found that the temperature of all four composting materials with MI can be
heated up to a higher temperature (>50
oC) than the control and produced less offensive smells. All
composts ended with a neutral or weakly alkaline pH value (pH 7 – 8) and a C:N
ratio of around 10 which indicating the maturation of composts. For enzymatic
activities, the highest activity of amylase (73 – 129 U/g) and cellulase (75 –
148 U/g) occurred at the beginning of the composting process. The maximum
activities of lipase (5 – 10 U/g) and protease (46 – 72 U/g) were at the middle
stage of the composting process. The germination indexes of the five composts
were larger than 100% indicating non-phytotoxic. Although the temperature
profile and odour performance were outstanding in the presence of MI, most
other parameters did not show significant differences when co-compositing of
small scale model kitchen waste was carried out with an adequate initial C:N
ratio and moisture content. Further study is needed to distinguish the
potential beneficiary effects of MI for the composting of kitchen waste.
Nevertheless, the comparable performance of Tempeh
and Tapai
with EM in composting suggested that Tempeh
and Tapai
can be used to substitute the function of EM as a cheaper and more available
microbial source for the household.
Keywords: composting,
kitchen wastes, effective microorganisms, tempeh,
tapai
Abstrak
Pelupusan sisa makanan sama ada di tapak pelupusan atau
pembakaran akan menyebabkan pencemaran alam sekitar dan menglibatkan kos
rawatan yang tinggi. Pengkomposan merupakan cara pengurusan sisa makanan yang
berpotensi tetapi kerja penyelidikan terkini kurang memberi tumpuan kepada
degradasi sisa dapur yang berskala kecil. Melalui kajian ini, sisa model dapur,
daun kering dan dedak padi telah dirawat dengan empat sumber mikrob yang
berbeza iaitu komersial Mikroorganisma Efektif (EM), Tempeh, Tapai, campuran Tempeh
dan Tapai dan air sebagai kawalan. Didapati bahawa suhu keempat – empat bahan
kompos yang dirawat dengan inokulan mikrob boleh mencapai suhu yang lebih
tinggi (>50 oC) berbanding kawalan dan menghasilkan bau yang
kurang busuk. Semua kompos telah berakhir dengan nilai pH yang neutral atau
beralkali lemah (pH 7-8) dengan nisbah
C:N lebih kurang 10 yang menunjukkan kematangan kompos. Untuk aktiviti enzim,
aktiviti tertinggi amilase (73 – 129 U/g) dan selulase (75 – 148 U/g) berlaku
pada awal proses pengkomposan. Manakala, aktiviti maksimum lipase (5 – 10 U/g)
dan protease (46 – 72 U/g) berada di peringkat pertengahan proses pengkomposan.
Indeks percambahan kelima-lima kompos adalah lebih besar daripada 100%
menunjukkan ketiadaan fitotoksik. Walaupun profil suhu dan prestasi bau adalah
cemerlang, inokulan mikrob tidak menunjukkan keperluannya dari segi aspek –
aspek lain. Keperluan inokulan mikrob dalam proses pengkomposan sisa dapur
perlu ditentusahkan secara lebih mendalam dengan analisis yang lain. Walau
bagaimanapun, prestasi inokulasi yang disediakan daripada Tempeh dan Tapai
adalah setanding dengan EM. Ini mencadangkan bahawa ia boleh menggantikan EM
sebagai sumber yang lebih murah dan lebih tersedia kepada rumah tangga.
Kata kunci: pengkomposan, sisa makanan, mikroorganisma efektif, tempeh, tapai
References
1.
The Star (2014).
Govt to gradually introduce mandatory waste separation from Sept 2015. The Star.
www.thestar.com.my/News/Nation/2014/11/15/waste-sorting-mandatory-sept-2015/
[Assessed 28 April 2016].
2.
Hubbe, M. A.,
Nazhad, M. and Sánchez, C. (2010). Composting as a way to convert cellulosic
biomass and organic waste into high-value soil amendments: A review. Bioresources, 5(4): 2808 – 2854.
3.
Payel, S., Mukesh,
M. and Rajni, S. (2011). Microbial consortium: A new approach in effective
degradation of organic kitchen wastes. International
Journal of Environmental Science and Development, 2 (3): 170 – 174.
4.
Xi, B., Zhang, G.
And Liu, H. (2005). Process kinetics of inoculation composting of municipal
solid waste. Journal of Hazardous
Materials, 124(1): 165 – 172.
5.
Patidar, A., Gupta,
R. and Tiwari, A. (2012). Enhancement of bio-degradation of bio-solids via
microbial inoculation in integrated composting and vermicomposting technology. Scientific Report, 1(5): 1 – 4.
6.
Saad, N. F. M.,
Ma’min, N. N., Zain, S. M., Basri, N. E. A. and Zaini, N. S. M. (2013).
Composting of mixed yard and food wastes with effective microbes. Jurnal Teknologi, 65(2): 89 – 95.
7.
Stabnikova, O.,
Ding, H. B., Tay, J. H. and Wang, J. Y. (2005). Biotechnology for aerobic
conversion of food waste into organic fertilizer. Waste Management and Research, 23(1): 39 – 47.
8.
Nair, J. and
Okamitsu, K. (2010). Microbial inoculants for small scale composting of
putrescible kitchen wastes. Waste
Management, 30(6): 977 – 982.
9.
Abdullah, N., Chin,
N. L., Mokhtar, M. N. And Taip, F. S. (2013). Effects of bulking agents, load
size or starter cultures in kitchen-waste composting. International Journal of Recycling of Organic Waste in Agriculture,
2(1): 1 – 10.
10.
Norlidah, R.
(2010). Home composting: Step-by-step guide to Takakura composting, The Star. [Assessed 28 April 2016].
11.
Ying, G. H. and
Ibrahim, M. H. (2013). Local knowledge in waste management: A study of Takakura
home method. Journal of Environmental
Science, 2: 528 – 533.
12.
Hafid, H. S.,
Nor'Aini, A., Omar, F. N., Phang, L., Suraini, A. and Hassan, M. A. (2010). A
comparative study of organic acids production from kitchen wastes and simulated
kitchen waste. Australian Journal of
Basic and Applied Sciences, 4(4): 639 – 645.
13.
The United States
Department of Agriculture (1998). Estimating soil moisture by feel and
appearance. Washington, D.C.
14.
Kutsanedzie, F.,
Rockson, G. N., Aklaku, E. D. and Achio, S. (2012). Comparisons of compost
maturity indicators for two field scale composting systems. International Research Journal of Applied
and Basic Science, 3(4): 713 – 720.
15.
Hubbe, M. A.,
Nazhad, M. and Sanchez, C. (2010). Composting as a way to convert cellulosic
biomass and organic waste into high-value soil amendments: A review. Bioresources, 5(4): 2808 – 2854.
16.
Ismail, K. A.,
El-Din, H. M. S., Mohamed, S. M., Latif, A. B. M. A. and Ali, M. A. M. (2013).
Monitoring of physical, chemical, microbial and enzymatic parameters during
composting of municipal solid wastes: A
Comparative Study. Journal of Pure
Applied Microbiolology, 8(1): 211 – 224.
17.
Food and Agriculture Organization of the United Nations.
(2000). Simple soil, water and plant testing techniques for soil resource
management. Rome, Italy.
18.
Woods End Research Laboratory. (2000). Compost quality
standard and guidelines. Compost quality in America.
19.
Shyamala, D. and
Belagali, S. (2012). Studies on variations in physico-chemical
and biological characteristics at different maturity stages of municipal solid
waste compost. International Journal of
Environmental Sciences, 2(4): 1984 – 1997.
20.
Mishra, S. and
Behera, N. (2008). Amylase activity of a starch degrading bacteria isolated from
soil receiving kitchen wastes. African
journal of biotechnology, 7(18): 3326 – 3331.
21.
Ghose, T. (1987).
Measurement of cellulase activities. Pure
and Applied Chemistry, 59(2): 257 – 268.
22.
Cupp-Enyard, C.
(2008). Sigma's non-specific protease activity assay-casein as a substrate. Journal of Visualized Experiments, 19: 1
– 2.
23.
Margesin, R.,
Feller, G., Hämmerle, M., Stegner, U. and Schinner, F. (2002). A colorimetric
method for the determination of lipase activity in soil. Biotechnology Letters, 24(1): 27 – 33.
24.
Bernal, M. P.,
Alburquerque, J. A. and Moral, R. (2009). Composting of animal manures and
chemical criteria for compost maturity assessment: A review. Bioresource Technology, 100(22): 5444 –
5453.
25.
Sundberg, C.,
Smårs, S. and Jönsson, H. (2004). Low pH as an inhibiting factor in the
transition from mesophilic to thermophilic phase in composting. Bioresource Technology, 95(2): 145 –
150.
26.
Dickson, N.,
Richard, T., Kozlowski, R. and Sobel, P. L. (1991). Composting to reduce the
waste stream: a guide to small scale food
and yard waste composting. Northeast
Regional Agricultural Engineering Service: pp 1 – 53.
27.
Pan, I. and Sen, S. (2013). Microbial and physico-chemical analysis of composting process of wheat straw. Indian Journal of Biotechnology, 12(1):
120 – 128.
28.
Miller, F. C.,
Macauley, B. J. and Harper, E. R. (1991). Investigation of various gases, pH
and redox potential in mushroom composting Phase I stacks. Animal Production Science, 31(3): 415 – 423.
29.
Cheng, K. H.,
Huang, M. C., Lu, M. F., Chou, Y. J. and Lin, J. J. M. (2013). Assessment of
degree of maturity of compost produced by different kitchen waste composting
methods. Advanced Materials Research,
652: 1642 – 1651.
30.
Pathak, A. K.,
Singh, M. M. and Kumar, V. (2011). Composting of municipal solid waste: a
sustainable waste management technique in Indian cities – A review. International Journal of Current Research,
3(12): 339 – 246.
31.
Gómez-Brandón, M.,
Lazcano, C. and Domínguez, J. (2008). The evaluation of stability and maturity
during the composting of cattle manure. Chemosphere,
70(3): 436 – 444.
32.
Baig, M., Zetzl, C.
and Brunner, G. (2005). Conversion of extracted rice bran and isolation of pure
bio-ethanol by means of supercritical fluid technology. 10th European Meeting on Supercritical Fluids, N(3): 1 – 6.
33.
Zhang, Y. P., Hong,
J. and Ye, X. (2009). Cellulase assays. Protocol biofuels. Springer, 581: 213 – 231.
34.
Raut, M., William,
S. P., Bhattacharyya, J., Chakrabarti, T. and Devotta, S. (2008). Microbial
dynamics and enzyme activities during rapid composting of municipal solid waste
– a compost maturity analysis perspective. Bioresource
Technology, 99(14): 6512 – 6519.