Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1447 - 1457

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-25

 

 

 

PHYSICO-CHEMICAL AND BIOLOGICAL CHANGES DURING CO-COMPOSTING OF MODEL KITCHEN WASTE, RICE BRAN AND DRIED LEAVES WITH DIFFERENT MICROBIAL INOCULANTS

 

(Perubahan Fiziko-Kimia dan Biologi dalam Pengkomposan Bersama Sisa Dapur, Dedak Padi dan Daun Kering dengan Mikrob Inokulan Yang Berbeza)

 

Yee Van Fan1, Chew Tin Lee1*, Chee Woh Leow1, Lee Suan Chua2, Mohamad Roji Sarmidi2

 

1Faculty of Chemical and Energy Engineering

2Institute of Bioproduct Development

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor. Malaysia

 

*Corresponding author: ctlee@utm.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Disposal of food waste either by land-filling or incineration will cause environmental pollution and engaged in high treatment costs. Composting can be a viable food waste management, however, less research works has focused on the degradation of small scale kitchen waste. In this study, co-composting of model kitchen waste, dried leaves and rice bran were inoculated with four different sources of microbial inoculants (MI) namely commercial Effective Microorganism (EM), Tempeh, Tapai, a mixture of Tempeh and Tapai and water as a control. It was found that the temperature of all four composting materials with MI can be heated up to a higher temperature (>50 oC) than the control and produced less offensive smells. All composts ended with a neutral or weakly alkaline pH value (pH 7 – 8) and a C:N ratio of around 10 which indicating the maturation of composts. For enzymatic activities, the highest activity of amylase (73 – 129 U/g) and cellulase (75 – 148 U/g) occurred at the beginning of the composting process. The maximum activities of lipase (5 – 10 U/g) and protease (46 – 72 U/g) were at the middle stage of the composting process. The germination indexes of the five composts were larger than 100% indicating non-phytotoxic. Although the temperature profile and odour performance were outstanding in the presence of MI, most other parameters did not show significant differences when co-compositing of small scale model kitchen waste was carried out with an adequate initial C:N ratio and moisture content. Further study is needed to distinguish the potential beneficiary effects of MI for the composting of kitchen waste. Nevertheless, the comparable performance of Tempeh and Tapai with EM in composting suggested that Tempeh and Tapai can be used to substitute the function of EM as a cheaper and more available microbial source for the household.

 

Keywords:  composting, kitchen wastes, effective microorganisms, tempeh, tapai

 

Abstrak

Pelupusan sisa makanan sama ada di tapak pelupusan atau pembakaran akan menyebabkan pencemaran alam sekitar dan menglibatkan kos rawatan yang tinggi. Pengkomposan merupakan cara pengurusan sisa makanan yang berpotensi tetapi kerja penyelidikan terkini kurang memberi tumpuan kepada degradasi sisa dapur yang berskala kecil. Melalui kajian ini, sisa model dapur, daun kering dan dedak padi telah dirawat dengan empat sumber mikrob yang berbeza iaitu komersial Mikroorganisma Efektif (EM), Tempeh, Tapai, campuran Tempeh dan Tapai dan air sebagai kawalan. Didapati bahawa suhu keempat – empat bahan kompos yang dirawat dengan inokulan mikrob boleh mencapai suhu yang lebih tinggi (>50 oC) berbanding kawalan dan menghasilkan bau yang kurang busuk. Semua kompos telah berakhir dengan nilai pH yang neutral atau beralkali lemah  (pH 7-8) dengan nisbah C:N lebih kurang 10 yang menunjukkan kematangan kompos. Untuk aktiviti enzim, aktiviti tertinggi amilase (73 – 129 U/g) dan selulase (75 – 148 U/g) berlaku pada awal proses pengkomposan. Manakala, aktiviti maksimum lipase (5 – 10 U/g) dan protease (46 – 72 U/g) berada di peringkat pertengahan proses pengkomposan. Indeks percambahan kelima-lima kompos adalah lebih besar daripada 100% menunjukkan ketiadaan fitotoksik. Walaupun profil suhu dan prestasi bau adalah cemerlang, inokulan mikrob tidak menunjukkan keperluannya dari segi aspek – aspek lain. Keperluan inokulan mikrob dalam proses pengkomposan sisa dapur perlu ditentusahkan secara lebih mendalam dengan analisis yang lain. Walau bagaimanapun, prestasi inokulasi yang disediakan daripada Tempeh dan Tapai adalah setanding dengan EM. Ini mencadangkan bahawa ia boleh menggantikan EM sebagai sumber yang lebih murah dan lebih tersedia kepada rumah tangga.

 

Kata kunci:  pengkomposan, sisa makanan, mikroorganisma efektif, tempeh, tapai

 

References

1.       The Star (2014). Govt to gradually introduce mandatory waste separation from Sept 2015. The Star. www.thestar.com.my/News/Nation/2014/11/15/waste-sorting-mandatory-sept-2015/ [Assessed 28 April 2016].

2.       Hubbe, M. A., Nazhad, M. and Sánchez, C. (2010). Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. Bioresources, 5(4): 2808 – 2854.

3.       Payel, S., Mukesh, M. and Rajni, S. (2011). Microbial consortium: A new approach in effective degradation of organic kitchen wastes. International Journal of Environmental Science and Development, 2 (3): 170 – 174.

4.       Xi, B., Zhang, G. And Liu, H. (2005). Process kinetics of inoculation composting of municipal solid waste. Journal of Hazardous Materials, 124(1): 165 – 172.

5.       Patidar, A., Gupta, R. and Tiwari, A. (2012). Enhancement of bio-degradation of bio-solids via microbial inoculation in integrated composting and vermicomposting technology. Scientific Report, 1(5): 1 – 4.

6.       Saad, N. F. M., Ma’min, N. N., Zain, S. M., Basri, N. E. A. and Zaini, N. S. M. (2013). Composting of mixed yard and food wastes with effective microbes. Jurnal Teknologi, 65(2): 89 – 95.

7.       Stabnikova, O., Ding, H. B., Tay, J. H. and Wang, J. Y. (2005). Biotechnology for aerobic conversion of food waste into organic fertilizer. Waste Management and Research, 23(1): 39 – 47.

8.       Nair, J. and Okamitsu, K. (2010). Microbial inoculants for small scale composting of putrescible kitchen wastes. Waste Management, 30(6): 977 – 982.

9.       Abdullah, N., Chin, N. L., Mokhtar, M. N. And Taip, F. S. (2013). Effects of bulking agents, load size or starter cultures in kitchen-waste composting. International Journal of Recycling of Organic Waste in Agriculture, 2(1): 1 – 10.

10.    Norlidah, R. (2010). Home composting: Step-by-step guide to Takakura composting, The Star. [Assessed 28 April 2016].

11.    Ying, G. H. and Ibrahim, M. H. (2013). Local knowledge in waste management: A study of Takakura home method. Journal of Environmental Science, 2: 528 – 533.

12.    Hafid, H. S., Nor'Aini, A., Omar, F. N., Phang, L., Suraini, A. and Hassan, M. A. (2010). A comparative study of organic acids production from kitchen wastes and simulated kitchen waste. Australian Journal of Basic and Applied Sciences, 4(4): 639 – 645.

13.    The United States Department of Agriculture (1998). Estimating soil moisture by feel and appearance. Washington, D.C.

14.    Kutsanedzie, F., Rockson, G. N., Aklaku, E. D. and Achio, S. (2012). Comparisons of compost maturity indicators for two field scale composting systems. International Research Journal of Applied and Basic Science, 3(4): 713 – 720.

15.    Hubbe, M. A., Nazhad, M. and Sanchez, C. (2010). Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. Bioresources, 5(4): 2808 – 2854.

16.    Ismail, K. A., El-Din, H. M. S., Mohamed, S. M., Latif, A. B. M. A. and Ali, M. A. M. (2013). Monitoring of physical, chemical, microbial and enzymatic parameters during composting of municipal solid wastes: A Comparative Study. Journal of Pure Applied Microbiolology, 8(1): 211 – 224.

17.    Food and Agriculture Organization of the United Nations. (2000). Simple soil, water and plant testing techniques for soil resource management. Rome, Italy.

18.    Woods End Research Laboratory. (2000). Compost quality standard and guidelines. Compost quality in America.

19.    Shyamala, D. and Belagali, S. (2012). Studies on variations in physico-chemical and biological characteristics at different maturity stages of municipal solid waste compost. International Journal of Environmental Sciences, 2(4): 1984 – 1997.

20.    Mishra, S. and Behera, N. (2008). Amylase activity of a starch degrading bacteria isolated from soil receiving kitchen wastes. African journal of biotechnology, 7(18): 3326 – 3331. 

21.    Ghose, T. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2): 257 – 268.

22.    Cupp-Enyard, C. (2008). Sigma's non-specific protease activity assay-casein as a substrate. Journal of Visualized Experiments, 19: 1 – 2.

23.    Margesin, R., Feller, G., Hämmerle, M., Stegner, U. and Schinner, F. (2002). A colorimetric method for the determination of lipase activity in soil. Biotechnology Letters, 24(1): 27 – 33.

24.    Bernal, M. P., Alburquerque, J. A. and Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment: A review. Bioresource Technology, 100(22): 5444 – 5453.

25.    Sundberg, C., Smårs, S. and Jönsson, H. (2004). Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresource Technology, 95(2): 145 – 150.

26.    Dickson, N., Richard, T., Kozlowski, R. and Sobel, P. L. (1991). Composting to reduce the waste stream: a guide to small scale food and yard waste composting. Northeast Regional Agricultural Engineering Service: pp 1 – 53.

27.    Pan, I. and  Sen, S. (2013). Microbial and physico-chemical analysis of composting process of wheat straw. Indian Journal of Biotechnology, 12(1): 120 – 128.

28.    Miller, F. C., Macauley, B. J. and Harper, E. R. (1991). Investigation of various gases, pH and redox potential in mushroom composting Phase I stacks. Animal Production Science, 31(3): 415 – 423.

29.    Cheng, K. H., Huang, M. C., Lu, M. F., Chou, Y. J. and Lin, J. J. M. (2013). Assessment of degree of maturity of compost produced by different kitchen waste composting methods. Advanced Materials Research, 652: 1642 – 1651.

30.    Pathak, A. K., Singh, M. M. and Kumar, V. (2011). Composting of municipal solid waste: a sustainable waste management technique in Indian cities – A review. International Journal of Current Research, 3(12): 339 – 246.

31.    Gómez-Brandón, M., Lazcano, C. and Domínguez, J. (2008). The evaluation of stability and maturity during the composting of cattle manure. Chemosphere, 70(3): 436 – 444.

32.    Baig, M., Zetzl, C. and Brunner, G. (2005). Conversion of extracted rice bran and isolation of pure bio-ethanol by means of supercritical fluid technology. 10th European Meeting on Supercritical Fluids, N(3): 1 – 6.

33.    Zhang, Y. P., Hong, J. and Ye, X. (2009). Cellulase assays. Protocol biofuels. Springer, 581: 213 – 231.

34.    Raut, M., William, S. P., Bhattacharyya, J., Chakrabarti, T. and Devotta, S. (2008). Microbial dynamics and enzyme activities during rapid composting of municipal solid waste – a compost maturity analysis perspective. Bioresource Technology, 99(14): 6512 – 6519.

 




Previous                    Content                    Next