Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1458 – 1466
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-26
PREPARATION
OF LANTHANUM STRONTIUM COBALT OXIDE POWDER BY A MODIFIED SOL-GEL METHOD
(Penyediaan
Serbuk Lantanum Strontium Kobalt Oksida Melalui Kaedah Sol-Gel Terubahsuai)
Abdullah Abdul
Samat1, Mahendra Rao Somalu1*, Andanastuti Muchtar1,2,
Nafisah Osman3
1Fuel Cell Institute
2Department of Mechanical and Materials Engineering,
Faculty of Engineering and Built Environment
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Faculty of Applied Sciences,
Universiti
Teknologi MARA, 02600 Arau, Perlis, Malaysia
*Corresponding author: mahen@ukm.edu.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
A simple low temperature synthesis route
has been presented for the preparation of single perovskite phase of La0.6Sr0.4CoO3-δ
(LSCO) for cathode application in intermediate temperature proton conducting
solid oxide fuel cell (SOFC). A wet chemical method namely a modified sol-gel
method has been applied in this work. In this method, a combined citric acid
and ethylenediaminetetraacetic acid (EDTA) has been used as a chelating agent.
Ethylene glycol (EG) and activated carbon (AC) have been used as surfactants in
this process. The synthesized powders were characterized by X-ray
diffractometer (XRD), scanning electron microscope (FESEM) equipped with energy
dispersive X-ray (EDX) spectrometer and particle size analyzer (PSA) for phase
formation, morphology and particle size analysis, respectively. XRD result
revealed that a single LSCO perovskite phase for both surfactants formed at calcination
temperature of 900 °C. The produced single phase powders consist of homogeneous
and almost identical shape of particles as shown in SEM images. However, the
powder prepared using EG has a smaller average particle size diameter as
compared with the powder prepared using AC which is 149 nm and 190 nm,
respectively.
Keywords: modified sol-gel, surfactant, cathode, solid
oxide fuel cell, single perovskite phase of La0.6Sr0.4CoO3-δ
Abstrak
Satu kaedah sintesis ringkas pada suhu rendah telah dibentangkan untuk
menyediakan fasa tunggal perovskit La0.6Sr0.4CoO3-δ (LSCO) bagi aplikasi katod di dalam
konduktor proton sel bahan api oksida pepejal (SFOP) suhu sederhana. Satu
kaedah kimia basah, iaitu, kaedah sol-gel terubahsuai telah digunakan dalam
penyelidikan ini. Melalui kaedah ini, gabungan asid sitrik dan asid
atelindiamintetrasetik (EDTA) telah digunakan sebagai agen pengikat. Etilena
glikol (EG) dan karbon teraktif (AC) telah digunakan sebagai surfaktan dalam
proses ini. Serbuk yang disintesis telah dicirikan dengan menggunakan
pembelauan sinar-X (XRD), mikroskop elektron pengimbas (SEM) dilengkapi dengan
spektroskopi sinar-X sebaran tenaga (EDX) dan penganalisis saiz zarah (PSA)
bagi analisis pembentukan fasa, morfologi dan saiz zarah, masing-masing.
Keputusan XRD menunjukkan fasa tunggal perovskit LSCO bagi kedua-dua surfaktan
telah terbentuk pada suhu pengkalsinan 900 °C. Serbuk berfasa tunggal yang
terhasil terdiri daripada zarah yang homogen dan mempunyai bentuk yang hampir
sama seperti ditunjukkan dalam imej SEM. Walau bagaimanapun, serbuk yang
dihasilkan menggunakan EG mempunyai purata diameter saiz zarah yang lebih kecil
iaitu 149 nm berbanding serbuk yang dihasilkan menggunakan AC iaitu 190 nm.
Kata kunci: sol-gel terubahsuai, surfaktan, katod, proton sel bahan api oksida
pepejal, fasa tunggal perovskit La0.6Sr0.4CoO3-δ
References
1. Tao, Z., Bi, L.,
Yan, L., Sun, W., Zhu, Z., Peng, R. and Liu, W. (2009). A novel single phase
cathode material for a proton-conducting SOFC. Electrochemical
Communication, 11(3): 688 – 690.
2.
Handal,
H. T. and Thangadurai, V. (2013). Evaluation of chemical stability, thermal
expansion coefficient, and electrical properties of solid state and
wet-chemical synthesized Y and Mn-codoped CeO2 for solid oxide
fuel cells. Journal of Power Sources, 243: 458 – 471.
3.
Bi,
L., Fabbri, E. and Traversa, E. (2012). Novel Ba0.5Sr0.5(Co0.8Fe0.2)1 − xTixO3−δ
(x = 0, 0.05, and 0.1) cathode materials for proton-conducting solid
oxide fuel cells. Solid State Ionics, 214: 1 – 5.
4.
Goupil,
G., Delahaye, T., Gauthier, G., Sala, B. and Joud, F. L. (2012). Stability
study of possible air electrode materials for proton conducting electrochemical
cells. Solid State Ionics, 209 – 210: 36 – 42.
5.
Ling,
Y., Wang, F., Zhao, L., Liu, X. and Lin, B. (2014). Comparative study of
electrochemical properties of different composite cathode materials associated
to stable proton conducting BaZr0.7Pr0.1Y0.2O3-δ
electrolyte. Electrochimica Acta, 146: 1 – 7.
6.
Yu,
T., Mao, X. and Ma, G. (2014). Performance of cobalt-free perovskite La0.6Sr0.4Fe1−xNbxO3−δ
cathode materials for proton-conducting IT-SOFC. Journal Alloys Compounds,
608: 30 – 34.
7.
Tolchard,
J. R. and Grande, T. (2007). Chemical compatibility of candidate oxide cathodes
for BaZrO3 electrolytes. Solid State Ionics, 178(7–10): 593 –
599.
8.
Tao,
Y., Shao, J., Wang, J. and Wang, W.G. (2008). Synthesis and properties of La0.6Sr0.4CoO3−δ
nanopowder, Journal of Power Sources, 185(2): 609 – 614.
9.
Shao,
Z., Zhou, W. and Zhu, Z. (2012). Advanced synthesis of materials for
intermediate-temperature solid oxide fuel cells. Progress in Materials
Science, 57(4): 804 – 874.
10.
Wongmaneerung,
R., Yimnirun, R. and Ananta, S. (2009). Effect of two-stage sintering on phase
formation, microstructure and dielectric properties of perovskite PMN ceramics
derived from a corundum Mg4Nb2O9 precursor. Materials
Chemistry and Physics, 114(2–3): 569 – 575.
11.
Heel,
A., Holtappels, P. and Graule, T. (2010). On the synthesis and performance of
flame-made nanoscale La0.6Sr0.4CoO3−δ and its
influence on the application as an intermediate temperature solid oxide fuel
cell cathode. Journal of Power Sources, 195(19): 6709 – 6718.
12.
Acuña,
L. M., Peña-Martínez, J., Marrero-López, D., Fuentes, R. O., Nuñez, P. and
Lamas, D.G. (2011). Electrochemical performance of nanostructured La0.6Sr0.4CoO3−δ
and Sm0.5Sr0.5CoO3−δ cathodes for IT-SOFCs. Journal
of Power Sources, 196(22): 9276 – 9283.
13.
Bansal,
N. P. and Zhong, Z. (2006). Combustion synthesis of Sm0.5Sr0.5CoO3−x
and La0.6Sr0.4CoO3−x nanopowders for solid
oxide fuel cell cathodes. Journal of Power Sources, 158(1): 148 – 153.
14.
Hayd,
J., Dieterle, L., Guntow, U., Gerthsen, D. and Ivers-Tiffée, E. (2011).
Nanoscaled La0.6Sr0.4CoO3−δ as intermediate
temperature solid oxide fuel cell cathode: Microstructure and electrochemical
performance. Journal of Power Sources, 196(17): 7263 – 7270.