Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1467 - 1473
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-27
ADSORPTION
OF CADMIUM (II) IONS BY POLYACRYLONITRILE-BASED ACTIVATED CARBON NANOFIBERS/MAGNESIUM
OXIDE AS ITS ADSORBENTS
(Karbon
Nano-Gentian Teraktif Berasaskan Poliakrilonitril/Magnesium Oksida Sebagai
Penjerap untuk Penjerapan Ion Kadmium (II))
Faten Ermala Che
Othman, Norhaniza Yusof*, Juhana Jaafar, Ahmad Fauzi Ismail, Norfadhilatuladha
Abdullah, Hasrinah Hasbullah
Advanced
Membrane Technology Research Center,
Faculty
of Chemical and Energy Engineering,
Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
*Corresponding author: norhaniza@petroleum.utm.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
In this work, activated carbon
nanofibers (ACNFs) from precursor polyacrylonitrile (PAN) and magnesium oxide
(MgO) were prepared via electrospinning process. The morphological properties
of the PAN/MgO-based ACNFs were characterized by using Scanning Electron
Microscopy (
Keywords: polyacrylonitrile, activated carbon
nanofiber, magnesium oxide, cadmium (II) ion adsorption
Abstrak
Kajian ini membincangkan tentang proses penyediaan karbon nano-gentian
teraktif (ACNFs) berasaskan poliakrilonitril (PAN) dan magnesium oksida (MgO)
melalui teknik putaran elektro. Ciri-ciri morfologi bagi ACNFs telah dicirikan
menggunakan Mikroskopi Elektron Pengimbasan (SEM) dan luas permukaan kawasan
tertentu (SSA) telah disiasat menggunakan kaedah penjerapan nitrogen,
Brunauer-Emmett-Teller (BET). Selain itu, kumpulan berfungsi dianalisis dengan
menggunakan Inframerah Transformasi Fourier (FTIR). Melalui kajian ini juga,
kapasiti penjerapan diantara ACNFs, ACNFs/MgO dan karbon berbutir teraktif
(GAC) terhadap ion (II) kadmium telah dijalankan. Hasil kajian menunjukkan
bahawa SSA daripada ACNFs yang telah diubah suai (198.80 m2/g)
adalah lebih tinggi berbanding dengan pelopor ACNFs (15.43 m2/g),
walau bagaimanapun SSA yang diperoleh agak rendah berbanding dengan nilai
purata teori. SEM mikrograf bagi pelopor ACNFs menunjukkan nano-gentian yang
lebih padat berbanding nano-gentian berstruktur sejajar dengan diameter purata
200-700 nm. Di bawah kajian penjerapan berkumpulan, pembuangan ion (II) kadmium
bagi kedua-dua ACNFs dan ACNFs/MgO adalah lebih tinggi berbanding dengan GAC
komersial. Hal ini telah membuktikan bahawa kapasiti penjerapan kedua-dua ACNFs
yang diperbuat daripada kaedah putaran elektro (ACNFs/MgO dan ACNFs) terhadap
ion (II) kadmium adalah lebih tinggi jika dibandingkan dengan kapasiti
penjerapan GAC.
Kata kunci: poliakrilonitril, karbon nano-gentian teraktif, magnesium oksida,
penjerapan ion kadmium (II)
References
1.
Li
Y., Wang Y.B., Gou X., Su Y.B. and Wang
G. (2006). Risk assessment of heavy metals in soils and vege-tables around
non-ferrous metals mining and smelting sites, Baiyin, China. Journal of Environmental Sciences,
18(6): 1124 – 1134.
2.
Kumar
R., Isloor A. M., Ismail A. F. and Matsuura T. (2013). Synthesis and characterization
of novel water soluble derivative of chitosan as an additive for polysulfone ultrafiltration membrane. Journal of Membrane Science, 40: 140 –
147.
3.
Meybeck
M., Kuusisto A., Makela A. and Malkki R. (1996). Water quality monitoring: a
practical guide to the design and implications of freshwater quality studies
and monitoring programmes, Water quality. Eds. London, UK: Chapman and Hall.
4.
Saeed
K., Park S.Y. and Oh T. J. (2012). Preparation of hydrazine-modified
polyacrylonitrile nanofibers for the extraction of metal ions from aqueous
media. Journal of Applied Polymer
Science, 121(2): 869 – 873.
5.
Vila
G., Luger A. and Clodi M. (2012). B-type
natriuretic peptide modulates ghrelin, hunger, and satiety in healthy men. Diabetes, 61: 2592 – 2596.
6.
Barakat
M. A. (2011). New trends in removing heavy metal
from industrial wastewater. Arabic Journal of Chemical, 4: 38 – 41.
7.
Fu
F. and Wang Q. (2011). Removal of heavy metal ions from wastewater: A review. Journal of Environment Management, 92:
20 – 25.
8.
Liang
Y., Wu D. and Fu R. (2013). Carbon microfibers with hierarchical porous structure
from electrospun fiber-like natural biopolymer. Scientic Reports, 3: 1119 – 1124.
9.
Mao
X., Hatton T. and Rutledge G. (2013). A review of
electrospun carbon fibers as electrode materials for
energy storage. Current Organic Chemistry,
17(13): 1390 – 1401.
10.
Zahida
R., Rabia N., Durr-e-Shahwar, Muhammad Raza S. and Shujat A. (2014).
Utilization of magnesium and zinc oxide nano-adsorbents as potential
materials for treatment of copper
electroplating industry wastewater. Journal
of Environmental Chemical Engineering, 2(1): 642 – 651.
11.
Desta
M. B. (2013). Batch sorption experiments: Langmuir and Freundlich isotherm
studies for the adsorption of textile metal ions onto teff straw agricultural
waste. Journal of Thermodynamics,
2013: 1 – 6.
12.
Vijayakumar
G., Tamilarasan R. and Dharmendirakumar M. (2012). Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye
rhodamine-B from aqueous solution by the
use of natural adsorbent perlite. Journal
of Materials and Environmental Science, 3(1): 157 – 170.
13.
Kampalanonwat
P. and Supaphol
P. (2014). The study of
competitive adsorption of heavy metal ions from aqueous solution by aminated
polyacrylonitrile nanofibers mat. Energy
Procedia, 56: 142 – 151.
14.
Zussman
E., Chen X., Ding W., Calabri L., Dikin D. A., Quintana J. P. and Ruoff R. S.
(2005). Mechanical and structural characterization of electrospun PAN-derived
carbon nanofibers. Carbon, 43: 2175 –
2185.
15.
Huang
Z. M., Zhang Y. Z., Kotaki M. and Ramakrishna S. (2003). A review on polymer nanofibers by electro-spinning
and their applications in nanocomposites. Composites
Science and Technology, 63(15): 2223
– 2253.
16.
Drew
C., Liu X., Ziegler D., Wang X.Y., Bruno F. F., Whitten J., Samuelson L. A. and
Kumar J. (2003). Metal oxide-coated polymer nanofibers. American Chemical Society, 3(2): 143 – 147.
17.
Dadvar
S., Tavanai H. and Morshed M. (2012). Effect of
embedding MgO and
Al2O3 nanoparticles in the precursor on the pore
characteristics of PAN based activated carbon nanofibers. Journal of Analytical and Applied Pyrolysis, 98: 98 – 105.
18.
Abdullah
A. H., Kassim A., Zainal Z., Hussein M. Z., Kuang D., Ahmad F. and Wooi O.S.
(2001). Preparation and characterization
of activated carbon from
gelam wood bark. Malaysian Journal of Analytical Sciences, 7(1): 65 – 68.
19.
Bonso
J. S., Kalaw G. D. and Ferraris J. P. (2014). High surface area carbon
nanofibers derived from electro-spun PIM-1 for energy storage applications. Journal of Materials Chemistry A, 2: 418
– 424.
20.
Arshad
S. N., Naraghi M. and Chasiotis I. (2011). Strong carbon nanofibers from
electrospun polyacrylonitrile, Carbon,
49: 1710 – 1719.
21.
Hofmeister
M., Keppel E. and Speck K. (2003). Adsorption and reflection infrared spectra
of MgO and other diatomic compounds. Monthly
Notices of the Royal Astronomical Society, 345(1): 16 – 38.
22.
Rajagopalan
S., Koper O., Decker S. and Klabunde K. J. (2002). Nanocrystalline metal oxides
as destructive adsorbents for organophosphorus compounds at ambient temperatures. Chemistry-A European Journal, 8(11): 2602 – 2607.