Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1467 - 1473

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-27

 

 

 

ADSORPTION OF CADMIUM (II) IONS BY POLYACRYLONITRILE-BASED ACTIVATED CARBON NANOFIBERS/MAGNESIUM OXIDE AS ITS ADSORBENTS

 

(Karbon Nano-Gentian Teraktif Berasaskan Poliakrilonitril/Magnesium Oksida Sebagai Penjerap untuk Penjerapan Ion Kadmium (II))

 

Faten Ermala Che Othman, Norhaniza Yusof*, Juhana Jaafar, Ahmad Fauzi Ismail, Norfadhilatuladha Abdullah, Hasrinah Hasbullah

 

Advanced Membrane Technology Research Center,

Faculty of Chemical and Energy Engineering,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

 

*Corresponding author: norhaniza@petroleum.utm.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

In this work, activated carbon nanofibers (ACNFs) from precursor polyacrylonitrile (PAN) and magnesium oxide (MgO) were prepared via electrospinning process. The morphological properties of the PAN/MgO-based ACNFs were characterized by using Scanning Electron Microscopy (SEM) and the specific surface area (SSA) were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET) methods. Moreover, the functional groups were analyzed by using Fourier Transform Infrared (FTIR). Besides that, the sorption study has been conducted in order to determine the adsorption capacity between electrospun ACNFs/MgO, pristine ACNFs and granular activated carbon (GAC) towards cadmium (II) ions. The results showed that the SSA of modified ACNFs (198.80 m2/g) is significantly higher compared to the precursor ACNFs (15.43 m2/g), however the SSA obtained is quite lower compared to the average theoretical value. SEM micrograph of pristine ACNFs depicted more compact nanofibers compared to aligned nanofibers with average diameter of 200-700 nm. Under batch adsorption study, it was found out that Cd(II) removal of both ACNFs and ACNFs/MgO is higher compared to the commercial GAC. It has been demonstrated that the adsorption capacity of both electrospun ACNFs (ACNFs/MgO and pristine ACNFs) is higher when compared to the adsorption capacity of commercial GAC towards Cd (II) ions.

 

Keywords:  polyacrylonitrile, activated carbon nanofiber, magnesium oxide, cadmium (II) ion adsorption

 

Abstrak

Kajian ini membincangkan tentang proses penyediaan karbon nano-gentian teraktif (ACNFs) berasaskan poliakrilonitril (PAN) dan magnesium oksida (MgO) melalui teknik putaran elektro. Ciri-ciri morfologi bagi ACNFs telah dicirikan menggunakan Mikroskopi Elektron Pengimbasan (SEM) dan luas permukaan kawasan tertentu (SSA) telah disiasat menggunakan kaedah penjerapan nitrogen, Brunauer-Emmett-Teller (BET). Selain itu, kumpulan berfungsi dianalisis dengan menggunakan Inframerah Transformasi Fourier (FTIR). Melalui kajian ini juga, kapasiti penjerapan diantara ACNFs, ACNFs/MgO dan karbon berbutir teraktif (GAC) terhadap ion (II) kadmium telah dijalankan. Hasil kajian menunjukkan bahawa SSA daripada ACNFs yang telah diubah suai (198.80 m2/g) adalah lebih tinggi berbanding dengan pelopor ACNFs (15.43 m2/g), walau bagaimanapun SSA yang diperoleh agak rendah berbanding dengan nilai purata teori. SEM mikrograf bagi pelopor ACNFs menunjukkan nano-gentian yang lebih padat berbanding nano-gentian berstruktur sejajar dengan diameter purata 200-700 nm. Di bawah kajian penjerapan berkumpulan, pembuangan ion (II) kadmium bagi kedua-dua ACNFs dan ACNFs/MgO adalah lebih tinggi berbanding dengan GAC komersial. Hal ini telah membuktikan bahawa kapasiti penjerapan kedua-dua ACNFs yang diperbuat daripada kaedah putaran elektro (ACNFs/MgO dan ACNFs) terhadap ion (II) kadmium adalah lebih tinggi jika dibandingkan dengan kapasiti penjerapan GAC.

 

Kata kunci:  poliakrilonitril, karbon nano-gentian teraktif, magnesium oksida, penjerapan ion kadmium (II)

 

References

1.       Li Y., Wang Y.B., Gou X., Su Y.B. and  Wang G. (2006).  Risk  assessment of  heavy metals in soils and vege-tables around non-ferrous metals mining and smelting sites, Baiyin, China. Journal of Environmental Sciences, 18(6): 1124 – 1134.

2.       Kumar R., Isloor A. M., Ismail A. F. and Matsuura T. (2013).  Synthesis  and  characterization  of  novel water soluble derivative of  chitosan  as an  additive  for polysulfone ultrafiltration membrane. Journal of Membrane Science, 40: 140 – 147.

3.       Meybeck M., Kuusisto A., Makela A. and Malkki R. (1996). Water quality monitoring: a practical guide to the design and implications of freshwater quality studies and monitoring programmes, Water quality. Eds. London, UK: Chapman and Hall.

4.       Saeed K., Park S.Y. and Oh T. J. (2012). Preparation of hydrazine-modified polyacrylonitrile nanofibers for the extraction of metal ions from aqueous media. Journal of Applied Polymer Science, 121(2): 869 – 873.

5.       Vila G., Luger A. and Clodi M. (2012).  B-type  natriuretic  peptide  modulates  ghrelin,  hunger, and satiety in healthy men. Diabetes, 61: 2592 – 2596.

6.       Barakat M. A. (2011).  New  trends  in  removing  heavy  metal from industrial wastewater.  Arabic Journal of Chemical, 4: 38 – 41.

7.       Fu F. and Wang Q. (2011). Removal of heavy metal ions from wastewater: A review. Journal of Environment Management, 92: 20 – 25.

8.       Liang Y., Wu D. and Fu R. (2013).  Carbon  microfibers  with  hierarchical  porous  structure from electrospun fiber-like natural biopolymer. Scientic Reports, 3: 1119 – 1124.

9.       Mao X., Hatton T. and Rutledge G. (2013).  A  review  of  electrospun  carbon fibers as electrode materials for energy storage. Current Organic Chemistry, 17(13): 1390 – 1401.

10.    Zahida R., Rabia N., Durr-e-Shahwar, Muhammad Raza S. and Shujat A. (2014). Utilization of magnesium and zinc oxide nano-adsorbents  as  potential  materials for treatment of copper electroplating industry wastewater. Journal of Environmental Chemical Engineering, 2(1): 642 – 651.

11.    Desta M. B. (2013). Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw agricultural waste. Journal of Thermodynamics, 2013: 1 – 6.

12.    Vijayakumar  G., Tamilarasan  R. and  Dharmendirakumar  M.  (2012).  Adsorption,  kinetic,  equilibrium  and thermodynamic  studies on the removal of basic dye rhodamine-B from  aqueous solution by the use of natural adsorbent perlite. Journal of Materials and Environmental Science, 3(1): 157 – 170.

13.    Kampalanonwat  P.  and  Supaphol  P. (2014).  The  study  of competitive adsorption of heavy metal ions from aqueous solution by aminated polyacrylonitrile nanofibers mat. Energy Procedia, 56: 142 – 151.

14.    Zussman E., Chen X., Ding W., Calabri L., Dikin D. A., Quintana J. P. and Ruoff R. S. (2005). Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon, 43: 2175 – 2185.

15.    Huang Z. M., Zhang Y. Z., Kotaki M. and Ramakrishna S. (2003).  A review on polymer nanofibers by electro-spinning and their applications in nanocomposites. Composites Science and Technology, 63(15):  2223 – 2253.

16.    Drew C., Liu X., Ziegler D., Wang X.Y., Bruno F. F., Whitten J., Samuelson L. A. and Kumar J. (2003). Metal oxide-coated polymer nanofibers. American Chemical Society, 3(2): 143 – 147.

17.    Dadvar  S., Tavanai H. and  Morshed M.  (2012).  Effect  of  embedding  MgO  and Al2O3 nanoparticles in the precursor on the pore characteristics of PAN based activated carbon nanofibers. Journal of Analytical and Applied Pyrolysis, 98: 98 – 105.

18.    Abdullah A. H., Kassim A., Zainal Z., Hussein M. Z., Kuang D., Ahmad F. and Wooi O.S. (2001). Preparation and  characterization  of  activated  carbon  from  gelam wood bark. Malaysian Journal of Analytical Sciences, 7(1): 65 – 68.

19.    Bonso J. S., Kalaw G. D. and Ferraris J. P. (2014).  High  surface  area  carbon nanofibers derived from electro-spun PIM-1 for energy storage applications. Journal of Materials Chemistry A, 2: 418 – 424.

20.    Arshad S. N., Naraghi M. and Chasiotis I. (2011). Strong carbon nanofibers from electrospun polyacrylonitrile, Carbon, 49: 1710 – 1719.

21.    Hofmeister M., Keppel E. and Speck K. (2003). Adsorption and reflection infrared spectra of MgO and other diatomic compounds. Monthly Notices of the Royal Astronomical Society, 345(1): 16 – 38.

22.    Rajagopalan S., Koper O., Decker S. and Klabunde K. J. (2002). Nanocrystalline metal oxides as destructive adsorbents  for  organophosphorus  compounds  at ambient temperatures. Chemistry-A European Journal, 8(11): 2602 – 2607.

 




Previous                    Content                    Next