Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1474 - 1480
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-28
THE
EFFECT OF VARIOUS PRETREATMENT METHODS ON EMPTY FRUIT BUNCH FOR GLUCOSE
PRODUCTION
(Kesan
Kaedah Prarawatan Berbeza Terhadap Tandan Kosong Kelapa Sawit Bagi Penghasilan
Glukosa Ringkas)
Nurul Hazirah
Che Hamzah1, Masturah Markom1*, Shuhaida Harun1, Osman Hassan2
1Department of Chemical and Process Engineering, Faculty
of Engineering and Built Environment
2School of Chemical Sciences and Food Technology,
Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: masturahmarkom@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
In this study, a pretreatment of empty
fruit bunch (EFB) using supercritical carbon dioxide (SC-CO2), acid
and alkaline were investigated for glucose yield from enzymatic hydrolysis. The
chemical composition, X-ray diffraction (XRD) and Scanning Electron Microscopy
(SEM) analysis of EFB before and after pretreatment were determined. From this
study, the chemical composition of EFB (% g/g dry biomass) before pretreatment
for cellulose, hemicellulose and Klason lignin were recorded as 36.7%, 22.8%,
and 24.2%, respectively. After pretreatment, the highest cellulose composition
was obtained from EFB treated with alkaline followed by acid and SC-CO2
which gave the results of 48.5%, 47.7% and 38% respectively. The glucose yield
after enzymatic hydrolysis for untreated EFB was 17% (w/w). After pretreatment,
the glucose yield increased to 84.4%, 34% and 24% for alkaline, acid and SC-CO2
of the treated EFB, respectively. Other than that, XRD analysis showed increase
in the crystallinity index after each pretreatment. Morphology analysis showed
the surface of the treated EFB looked swollen and ruptured as compared with the
surface of the untreated EFB. Between the three pretreatments, alkaline
pretreatment gives the highest cellulose composition and glucose yield. Thus,
it shows that alkaline pretreatment was the best pretreatment method on EFB
compared to acid and SC-CO2 pretreatments.
Keywords: empty fruit bunches, enzymatic hydrolysis,
pretreatment, glucose
Abstrak
Melalui kajian ini
prarawatan tandan buah kosong (TKKS) menggunakan kaedah supergenting karbon
dioksida (SC-CO2), asid dan alkali telah dilakukan untuk mendapatkan
hasil glukosa daripada hidrolisis berenzim. Analisis komposisi kimia, pembelauan
sinar-X (XRD) dan mikroskopi pemgimbasan elektron (SEM) terhadap TKKS sebelum
dan selepas prarawatan telah ditentukan. Dari kajian ini komposisi kimia TKKS
(% g/g biomas kering) sebelum prarawatan bagi selulosa, hemiselulosa dan lignin
ialah 36.7%, 22.8%, and 24.2%. Selepas prarawatan, komposisi selulosa yang
paling tinggi diperolehi daripada TKKS terawat dengan prarawatan alkali diikuti
dengan prarawatan asid dan SC-CO2 iaitu 48.5%, 47.7% dan 38%. Hasil
glukosa selepas hidrolisis berenzim bagi TKKS yang tidak terawat ialah 17% (w/w).
Selepas prarawatan, hasil glukosa telah meningkat kepada 84.4%, 34% dan 24%
bagi prarawatan alkali, asid dan SC-CO2. Selain daripada itu,
analisis XRD menunjukkan peningkatan indeks penghabluran terhadap TKKS terawat.
Analisis morfologi menunjukkan perubahan pada permukaan TKKS terawat dimana ia
kelihatan bengkak dan pecah berbanding dengan permukaan TKKS yang tidak
terawat. Antara ketiga-tiga kaedah prarawatan, prarawatan alkali memberikan
komposisi selulosa dan hasil glukosa yang paling tinggi. Oleh itu, kajian ini
menunjukkan bahawa prarawatan alkali adalah kaedah prarawatan terbaik terhadap
TKKS berbanding prarawatan asid dan SC-CO2.
Kata kunci: tandan kosong kelapa sawit, hidrolisis berenzim, prarawatan, glukosa
References
1.
Shuit,
S. H., Tan, K. T., Lee, K. T. and Kamaruddin, A. H. (2009). Oil palm biomass as
a sustainable energy source: A Malaysian case study. Energy, 34(9): 1225 – 1235.
2.
Shamsudin,
S., Md Shah, U. K., Zainudin, H., Abd-Aziz, S., Mustapa Kamal, S. M., Shirai,
Y. and Hassan, M. A. (2012). Effect of steam pretreatment on oil palm empty
fruit bunch for the production of sugars. Biomass
and Bioenergy, 36: 280 – 288.
3.
Yaakob,
M. Y., Hasoloan, H. I. P., Yahaya, S. H. and Said, M. R. (2012). Solid fuel
from empty fruit bunch fiber and waste papers part 3: ash content from
combustion test. Global Engineers &
Technologists Review, 2(3): 26 – 32.
4.
Ariffin,
H., Hassan, M. A., Kalsom, M. S. U., Abdullah, N. and Shirai, Y. (2008). Effect
of physical, chemical and thermal pretreatments on the enzymatic hydrolysis of
oil palm empty fruit bunch (OPEFB). Journal
of Tropical Agriculture and Food Sciences, 36(2): 259 – 268.
5.
Zheng,
Y., Pan, Z. and Zhang, R. (2009). Overview of biomass pretreatment for
cellulosic ethanol production. International
Journal of Agricultural and Biological Engineering, 2: 51 – 69.
6.
Taherzadeh,
M. J. and Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve
ethanol and biogas production: A review. International
Journal of Molecular Sciences, 9: 1621 – 1651.
7.
Misson,
M., Haron, R., Ahmad, M. F., Aishah, N. O. R. and Amin, S. (2009). Pretreatment
of empty palm fruit bunch for lignin degradation. Jurnal Teknologi, 50: 89 – 98.
8.
Chong,
P. S., Jahim, J. M., Harun, S., Lim, S. S., Mutalib, S. A., Hassan, O. and Nor,
M. T. M. (2013). Enhancement of batch biohydrogen production from
prehydrolysate of acid treated oil palm empty fruit bunch. International Journal of Hydrogen Energy, 38: 9592 – 9599.
9.
Varga,
E., Schmidt, A. S., Réczey, K. and Thomsen, A. B. (2003). Pretreatment of corn
stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology,
104: 37 – 50.
10.
Lü,
H., Ren, M., Zhang, M. and Chen, Y. (2013). Pretreatment of corn stover using
supercritical CO2 with water-ethanol as co-solvent. Chinese Journal of Chemical Engineering, 21(5):
551 – 557.
11.
Yin,
J., Hao, L., Yu, W., Wang, E., Zhao, M., Xu, Q. and Liu, Y. (2014). Enzymatic
hydrolysis enhancement of corn lignocellulose by supercritical CO2
combined with ultrasound pretreatment. Chinese
Journal of Catalysis, 35(5): 108 – 119.
12.
Narayanaswamy,
N., Faik, A., Goetz, D. J. and Gu, T. (2011). Supercritical carbon dioxide
pretreatment of corn stover and switchgrass for lignocellulosic ethanol
production. Bioresource Technology, 102(13):
6995 – 7000.
13.
Ying,
T. Y., Teong, L. K., Abdullah, W. N. W. and Peng, L. C. (2014). The effect of
various pretreatment methods on oil palm empty fruit bunch (EFB) and kenaf core
fibers for sugar production. Procedia
Environmental Sciences, 20: 328 – 335.
14.
Iberahim,
N. I., Jahim, J. M., Harun, S., Nor, M. T. M. and Hassan, O. (2013). Sodium
hydroxide pretreatment and enzymatic hydrolysis of oil palm mesocarp fiber. International Journal of Chemical
Engineering and Applications, 4(3): 101 – 105.
15.
Sluiter,
A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker,
D. (2008). Determination of structural carbohydrates and lignin in biomass.
Biomass analysis technology team laboratory analytical procedure.
16.
Srinivasan,
N. and Ju, L.-K. (2012). Statistical optimization of operating conditions for
supercritical carbon dioxide-based pretreatment of Guayule Bagasse. Biomass and Bioenergy, 47: 451 – 458.
17.
Segal,
L. G. J. M. A., Creely, J. J., Martin, A. E. and Conrad, C. M. (1959). An
empirical method for estimating the degree of crystallinity of native cellulose
using the X-ray diffractometer. Textile
Research Journal, 29(10): 786 – 794.
18.
Xiao,
L., Sun, Z., Shi, Z. and Xu, F. (2011). Impact of hot compressed water
pretreatment on the structural changes of woody biomass for bioethanol
production. Bioresources, 6: 1576 –
1598.
19.
Kelly-Yong,
T. L., Lee, K. T., Mohamed, A. R. and Bhatia, S. (2007). Potential of hydrogen
from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 35: 5692 – 5701.
20.
Kim,
K. H. and Hong, J. (2001). Supercritical CO2 pretreatment of
lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology, 77(2): 139 – 144.
21.
Singh,
R., Shukla, A., Tiwari, S. and Srivastava, M. (2014). A review on
delignification of lignocellulosic biomass for enhancement of ethanol
production potential. Renewable and
Sustainable Energy Reviews, 32: 713 – 728.
22.
Xiao,
B., Sun, X. and Sun, R. (2001). Chemical, structural, and thermal
characterizations of alkali-soluble lignins and hemicelluloses, and cellulose
from maize stems, rye straw, and rice straw. Polymer Degradation and Stability, 74(2): 307 – 319.
23.
Park,
S., Baker, J. O., Himmel, M. E., Parilla, P. A. and Johnson, D. K. (2010).
Cellulose crystallinity index: Measurement techniques and their impact on
interpreting cellulase performance. Biotechnology
for Biofuels, 3: 1 – 10.
24.
Hassan,
O., Ling, T. P., Maskat, M. Y., Illias, R. M., Badri, K., Jahim, J. and Mahadi,
N. M. (2013). Optimization of pretreatments for the hydrolysis of oil palm
empty fruit bunch fiber (EFBF) using enzyme mixtures. Biomass and Bioenergy, 56: 137 – 146.
25.
Gao,
M., Xu, F., Li, S., Ji, X., Chen, S. and Zhang, D. (2010). Effect of SC-CO2
pretreatment in increasing rice straw biomass conversion. Biosystems Engineering, 106(4): 470 –
475.