Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1474 - 1480

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-28

 

 

 

THE EFFECT OF VARIOUS PRETREATMENT METHODS ON EMPTY FRUIT BUNCH FOR GLUCOSE PRODUCTION

 

(Kesan Kaedah Prarawatan Berbeza Terhadap Tandan Kosong Kelapa Sawit Bagi Penghasilan Glukosa Ringkas)

 

Nurul Hazirah Che Hamzah1, Masturah Markom1*, Shuhaida Harun1, Osman Hassan2

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

2School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: masturahmarkom@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

In this study, a pretreatment of empty fruit bunch (EFB) using supercritical carbon dioxide (SC-CO2), acid and alkaline were investigated for glucose yield from enzymatic hydrolysis. The chemical composition, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis of EFB before and after pretreatment were determined. From this study, the chemical composition of EFB (% g/g dry biomass) before pretreatment for cellulose, hemicellulose and Klason lignin were recorded as 36.7%, 22.8%, and 24.2%, respectively. After pretreatment, the highest cellulose composition was obtained from EFB treated with alkaline followed by acid and SC-CO2 which gave the results of 48.5%, 47.7% and 38% respectively. The glucose yield after enzymatic hydrolysis for untreated EFB was 17% (w/w). After pretreatment, the glucose yield increased to 84.4%, 34% and 24% for alkaline, acid and SC-CO2 of the treated EFB, respectively. Other than that, XRD analysis showed increase in the crystallinity index after each pretreatment. Morphology analysis showed the surface of the treated EFB looked swollen and ruptured as compared with the surface of the untreated EFB. Between the three pretreatments, alkaline pretreatment gives the highest cellulose composition and glucose yield. Thus, it shows that alkaline pretreatment was the best pretreatment method on EFB compared to acid and SC-CO2 pretreatments.

 

Keywords:  empty fruit bunches, enzymatic hydrolysis, pretreatment, glucose

 

Abstrak

Melalui kajian ini prarawatan tandan buah kosong (TKKS) menggunakan kaedah supergenting karbon dioksida (SC-CO2), asid dan alkali telah dilakukan untuk mendapatkan hasil glukosa daripada hidrolisis berenzim. Analisis komposisi kimia, pembelauan sinar-X (XRD) dan mikroskopi pemgimbasan elektron (SEM) terhadap TKKS sebelum dan selepas prarawatan telah ditentukan. Dari kajian ini komposisi kimia TKKS (% g/g biomas kering) sebelum prarawatan bagi selulosa, hemiselulosa dan lignin ialah 36.7%, 22.8%, and 24.2%. Selepas prarawatan, komposisi selulosa yang paling tinggi diperolehi daripada TKKS terawat dengan prarawatan alkali diikuti dengan prarawatan asid dan SC-CO2 iaitu 48.5%, 47.7% dan 38%. Hasil glukosa selepas hidrolisis berenzim bagi TKKS yang tidak terawat ialah 17% (w/w). Selepas prarawatan, hasil glukosa telah meningkat kepada 84.4%, 34% dan 24% bagi prarawatan alkali, asid dan SC-CO2. Selain daripada itu, analisis XRD menunjukkan peningkatan indeks penghabluran terhadap TKKS terawat. Analisis morfologi menunjukkan perubahan pada permukaan TKKS terawat dimana ia kelihatan bengkak dan pecah berbanding dengan permukaan TKKS yang tidak terawat. Antara ketiga-tiga kaedah prarawatan, prarawatan alkali memberikan komposisi selulosa dan hasil glukosa yang paling tinggi. Oleh itu, kajian ini menunjukkan bahawa prarawatan alkali adalah kaedah prarawatan terbaik terhadap TKKS berbanding prarawatan asid dan SC-CO2.

 

Kata kunci:  tandan kosong kelapa sawit, hidrolisis berenzim, prarawatan, glukosa

 

References

1.       Shuit, S. H., Tan, K. T., Lee, K. T. and Kamaruddin, A. H. (2009). Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy, 34(9): 1225 – 1235.

2.       Shamsudin, S., Md Shah, U. K., Zainudin, H., Abd-Aziz, S., Mustapa Kamal, S. M., Shirai, Y. and Hassan, M. A. (2012). Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars. Biomass and Bioenergy, 36: 280 – 288.

3.       Yaakob, M. Y., Hasoloan, H. I. P., Yahaya, S. H. and Said, M. R. (2012). Solid fuel from empty fruit bunch fiber and waste papers part 3: ash content from combustion test. Global Engineers & Technologists Review, 2(3): 26 – 32.

4.       Ariffin, H., Hassan, M. A., Kalsom, M. S. U., Abdullah, N. and Shirai, Y. (2008). Effect of physical, chemical and thermal pretreatments on the enzymatic hydrolysis of oil palm empty fruit bunch (OPEFB). Journal of Tropical Agriculture and Food Sciences, 36(2): 259 – 268.

5.       Zheng, Y., Pan, Z. and Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2: 51 – 69.

6.       Taherzadeh, M. J. and Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9: 1621 – 1651.

7.       Misson, M., Haron, R., Ahmad, M. F., Aishah, N. O. R. and Amin, S. (2009). Pretreatment of empty palm fruit bunch for lignin degradation. Jurnal Teknologi, 50: 89 – 98.

8.       Chong, P. S., Jahim, J. M., Harun, S., Lim, S. S., Mutalib, S. A., Hassan, O. and Nor, M. T. M. (2013). Enhancement of batch biohydrogen production from prehydrolysate of acid treated oil palm empty fruit bunch. International Journal of Hydrogen Energy, 38: 9592 – 9599.

9.       Varga, E., Schmidt, A. S., Réczey, K. and Thomsen, A. B. (2003). Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology, 104: 37 – 50.

10.    Lü, H., Ren, M., Zhang, M. and Chen, Y. (2013). Pretreatment of corn stover using supercritical CO2 with water-ethanol as co-solvent. Chinese Journal of Chemical Engineering, 21(5): 551 – 557.

11.    Yin, J., Hao, L., Yu, W., Wang, E., Zhao, M., Xu, Q. and Liu, Y. (2014). Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment. Chinese Journal of Catalysis, 35(5): 108 – 119.

12.    Narayanaswamy, N., Faik, A., Goetz, D. J. and Gu, T. (2011). Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresource Technology, 102(13): 6995 – 7000.

13.    Ying, T. Y., Teong, L. K., Abdullah, W. N. W. and Peng, L. C. (2014). The effect of various pretreatment methods on oil palm empty fruit bunch (EFB) and kenaf core fibers for sugar production. Procedia Environmental Sciences, 20: 328 – 335.

14.    Iberahim, N. I., Jahim, J. M., Harun, S., Nor, M. T. M. and Hassan, O. (2013). Sodium hydroxide pretreatment and enzymatic hydrolysis of oil palm mesocarp fiber. International Journal of Chemical Engineering and Applications, 4(3): 101 – 105.

15.    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Biomass analysis technology team laboratory analytical procedure.

16.    Srinivasan, N. and Ju, L.-K. (2012). Statistical optimization of operating conditions for supercritical carbon dioxide-based pretreatment of Guayule Bagasse. Biomass and Bioenergy, 47: 451 – 458.

17.    Segal, L. G. J. M. A., Creely, J. J., Martin, A. E. and Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10): 786 – 794.

18.    Xiao, L., Sun, Z., Shi, Z. and Xu, F. (2011). Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. Bioresources, 6: 1576 – 1598.

19.    Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R. and Bhatia, S. (2007). Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 35: 5692 – 5701.

20.    Kim, K. H. and Hong, J. (2001). Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology, 77(2): 139 – 144.

21.    Singh, R., Shukla, A., Tiwari, S. and Srivastava, M. (2014). A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews, 32: 713 – 728.

22.    Xiao, B., Sun, X. and Sun, R. (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability, 74(2): 307 – 319.

23.    Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A. and Johnson, D. K. (2010). Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3: 1 – 10.

24.    Hassan, O., Ling, T. P., Maskat, M. Y., Illias, R. M., Badri, K., Jahim, J. and Mahadi, N. M. (2013). Optimization of pretreatments for the hydrolysis of oil palm empty fruit bunch fiber (EFBF) using enzyme mixtures. Biomass and Bioenergy, 56: 137 – 146.

25.    Gao, M., Xu, F., Li, S., Ji, X., Chen, S. and Zhang, D. (2010). Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosystems Engineering, 106(4): 470 – 475.

 




Previous                    Content                    Next