Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1481 - 1490

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-29

 

 

 

POLYIMIDE MEMBRANES FOR ORGANIC SALTS RECOVERY FROM MODEL BIOMASS FERMENTATION

 

(Membran Poliimida untuk Pengumpulan Garam Organik daripada Model Sup Penapaian Biojisim)

 

Nadiah Khairul Zaman, Rosiah Rohani*, Abdul Wahab Mohammad

 

Department of Chemical and Process Engineering,

Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: rosiah@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Succinic acid displays promising properties as a precursor for synthesizing valuable chemicals. However, its recovery experiences difficulty due to the formation of by-products with similar physicochemical properties, namely acetate and formate. The succinate separation process via pressure filtration membrane technology demonstrates polyimide (PI) membrane as a potential candidate due to its high resistance and selectivity to many organic solvents from its imide groups, an important feature in separation of biomass fermentation broth. This study aims to investigate the performance of newly synthesized PI (P84) membrane prepared by phase inversion for succinate recovery from fermentation broth (simulated model solution is used). PI polymer composition 14 17 wt% were cast to investigate the effect of varying polymer compositions on the performance of NF membrane determined from the recovery of succinate, and removal of formate and acetate from ternary organic salt solutions at concentration range between 10 50 g/L. PI membrane (15 wt%) shows the highest selective succinate retention of 73%. Succinate selective retention was observed to increase whereas rejection of by-products decreased at increasing mixed salt solution concentration from 20 50 g/L. Field Emission Scanning Electron Microscope (FESEM) results showed a PI membrane with dense and thick top layer, with porous middle substructure to support membrane performance.

 

Keywords:  polyimide, nanofiltration membrane, succinate, biomass fermentation, mixed salt solution

 

Abstrak

Asid suksinik mempunyai kepentingan sebagai pelopor dalam mensintesis bahan kimia yang bernilai. Namun, pengumpulannya menghadapi kesukaran kerana pembentukan satu lagi produk sampingan yang mempunyai sifat fizikokimia yang sama seperti asetat dan format. Dalam proses pemisahan/pengumpulan suksinat menerusi tekanan teknologi membran penapisan, membran poliimida (PI) didapati berpotensi sebagai calon membran kerana ia bersifat perintang yang tinggi kepada banyak pelarut organik dan juga mempunyai pemilihan yang tinggi ke atas air melalui kumpulan imida yang penting dalam pengasingan sup penapaian biojisim. Oleh itu, kajian ini bertujuan untuk menyiasat prestasi membran PI (P84) yang baru disintesis dan disediakan dengan teknik fasa songsangan dalam bidang pengumpulan suksinat dari sup penapaian (model simulasi digunakan). Kepekatan PI polimer sebanyak 14 – 17 wt% telah disediakan dan kesan kepekatan polimer dalam penyediaan membran PI telah disiasat untuk mencapai membran PI berprestasi tinggi yang ditentukan dari pengumpulan suksinat dan penyingkiran asetat dan format pada julat kepekatan antara 10 – 50 g/L. Melalui kajian ini, membran PI (15 wt%) menunjukkan pengumpulan suksinat tertinggi sebanyak 73%. Pengumpulan suksinat diperhatikan meningkat manakala penyingkiran produk sampingan berkurangan dengan peningkatan kepekatan garam campuran dari 20 – 50 g/L. FESEM yang menunjukkan lapisan atas membran PI yang padat dan tebal serta lapisan substruktur tengah yang berliang untuk menyokong prestasi membran PI.

 

Kata kunci:  poliimida, nanopenurasan, suksinat, penapaian biojisim, garam campuran

 

References

1.       Chimirri, F., Bosco, F., Ceccarelli, R., Venturello, A. and Geobaldo, F. (2010). Succinic acid and its derivatives: fermentative production using sustainable industrial agro food by-products and its applications in the food industry. Italian Journal of Food Science, 22: 119 - 125.

2.       Sener, A., Kadiata, M. M., Ladrie`re, L. and Malaisse, W. J. (1997). Synergistic insulinotropic action of succinate, acetate, and glucose esters in islets from normal and diabetic rats. Endocrine, 7: 151 - 155.

3.       Kurzrock, T. and Weuster-Botz, D. (2010). Recovery of succinic acid from fermentation broth. Biotechnolology Letter, 32: 331 - 339.

4.       Delhomme, C., Weuster-Botz, D. and Khun, F. E. (2009). Succinic acid from renewable resources as a C4 buildig-block chemical-a review of the catalytic possibilities in aqueous media. Green Chemistry, 11: 13 - 26.

5.       Song, H., Lee, J. W., Choi, S., You, J. K., Hong, W. H. and Lee, S. Y. (2007). Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production. Biotechnology and Bioengineering, 98: 1296 - 1304.

6.       Meynial-Salles, I., Dorotyn, S. and Soucaille, P. (2008). A new process for the continous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnology and Bioengineering, 99: 129 - 135.

7.       Vemuri, G. N., Eiteman, M. A. and Altman, E. (2002). Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. Journal of Industrial Microbiology and Biotechnology, 28: 325 - 332.

8.       Guettler, M. V., Rumler, D. and Jain, M. K. (1999). Actinobacillus succinogenes sp.nov., a novel succinic-acid-producing strain from the bovine rumen. International Journal of Systematic Bacteriology, 49: 207 - 216.

9.       Li, Q., Wang, D., Wu, Y., Li, W. L., Zhang, Y. J., Xing, J. M. and Su, Z. G. (2010). One step recovery of succinic acid from fermentation broths by crystallization. Separation and Purification Technololgy, 72: 294 - 300.

10.    Arora, M. B., Hestekin, J. A., Snyder, S. W., Martin, E. J. S., Lin, Y. J., Donnelly, M. I. and Sanville M. C. (2007). The separation biorector: a continuous separation process for the simultaneous production and direct capture of organic acids. Journal of Separation Science and Technology, 42: 2519 - 2538.

11.    Bechthold, I., Brezt, K., Kabasci, S., Kopitzky, R. and Springer, A. (2008) Succinic acid: A new platform chemical for biobased polymers from renewable resources. Chemical Engineering and Technology, 31: 647 - 654.

12.    McKinlay, J. B., Vieille, C. and Zeikus, J. G. (2007). Prospects for a biobased succinate industry. Applied Microbiology & Biotechnology. 76: 727 - 740.

13.    Huh, Y. S., Jun, Y.-S., Hong, Y. K., Song, H., Lee, S. Y. and Hong, W. H. (2006). Effective purification of succinic acid from fermentation broth produced by Mannheimia succinicproducens. Process Biochemistry, 41: 1461 - 1465.

14.    Nam, H.-G., Park, K.-M., Lim, S. S. and Mun, S. (2011). Adsorption equilibria of succinic acid and lactic acid on amberchrom CG300C resin. Journal of Chemical and Engineering Data, 56: 464 - 471.

15.    Cao, Y., Zhang, R., Sun, C., Cheng, T., Liu, Y. and Xian, M. (2013). Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. BioMed Research International, 2013: 1 - 12.

16.    Choi, J.-H., Fukushi, K. and Yamamoto, K. (2008). A study on the removal of organic acids from wastewaters using nanofiltration membranes. Separation and Purification Technology, 59: 17 - 25.

17.    Staszak, K., Wozniak, M. J., Karas, Z., Staniewski, J. and Prochaska, K. (2013). Application of nanofiltration in the process of the separation of model fermentation broth components. Polish Journal Chemical Technology, 15(4): 1 - 4.

18.    Yao, Z., Wu, H., Liu, H., Li, S. and Jiang, M. (2008). Method for separation succinic acid from anaerobic fermentation broth. Chinese Patent CN 200610086003.7

19.    Wu, H., Jiang, M., Wie, P., Lei, D., Yao, Z. and Zuo, P. (2011). Nanofiltration method for separation of succinic acid from its fermented broth. Chinese Patent CN 200910025531.5.

20.    Kang, S. H. and Chang, Y. K. (2005). Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration. Journal of Membrane Science, 246: 49 - 57.

21.    Datta, R., Glassner, D. A., Jain, M. K. and Vick Roy, J. R. (1992). Fermentation and purification process for succinic acid. U.S. Patent 5,168,055.

22.    Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J. and Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, 116: 366 -371.

23.    Vandezande, P., Li, X., Gevers, L. E. M. and Vankelecom, I. F. J. (2009). High throughput study of phase inversion parameters for polyimide-based SRNF membranes. Journal of Membrane Science, 330: 307 - 318.

24.    Valadez-Blanco, R. and Livingston, A. G. (2009). Solute molecular transport through polyimide asymmetric organic solvent nanofiltration (OSN) membranes and the effect of membrane-formation parameters on mass transfer. Journal of Membrane Scienc, 326: 332 - 342.

25.    See-Toh, Y. H., Ferreira, F. C. and Livingston, A. G. (2007). The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes. Journal of Membrane Science 299: 236 - 250.

26.    Vankelecom, I. F. J., De Smet, K., Gevers, L. E. M., and Jacobs, P. A., (2005). Nanofiltration. principles and applications. Ed. de A.I. Schäfer, A.G. Fane, T.D. Waite ; pról. de Robert J. Petersen, Elsevier.

27.    Lee, J., Chae, H.-R., Won, Y. J., Lee, K., Lee, C.-H., Lee, H. H., Kim, I.-C. and Lee, J.-M. (2013). Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. Journal of Membrane Science, 448: 223 - 230.

28.    Qiao, X., Chung, T.-S. and Pramoda, K. P. (2005). Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol. Journal of Membrane Science, 264: 176 - 189.

29.    DOW. Dow Water and Process Solutions - Levels of Separation of IX, RO, NF, UF and CFT (2015). DOW answer center. The DOW company.

30.    Peeters, J. M. M., Boom, J. P., Mulder, M. H. V. and Strathmann, H. (1998). Retention measurements of nanofiltration membranes with electrolyte solutions. Journal of Membrane Science, 145: 199 - 209.

31.    Lin, S. W., Sicairos, S. P. and Navarro, R. M. F. (2007). Preparation, characterization and salt rejection of negatively charged polyamide nanofiltration membranes. Journal of Mexican Chemical Society, 51: 129 - 135.

32.    Krieg, H. M., Modise, S. J., Keizer, K., and Neomagus, H. W. J. P. (2004) Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal. Desalination, 171: 205 -215.

33.    Van der Burggen, B., Schaep, J., Wilms, D. and Vandecasteele, C. (1999). Influence of molecular size, polarity and change on the retention of organis molecules by nanofiltration. Journal of Membrane Science, 156: 29 - 41.

 

 




Previous                    Content                    Next