Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1481 - 1490
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-29
POLYIMIDE
MEMBRANES FOR ORGANIC SALTS RECOVERY FROM MODEL BIOMASS FERMENTATION
(Membran
Poliimida untuk Pengumpulan Garam Organik daripada Model Sup Penapaian
Biojisim)
Nadiah Khairul
Zaman, Rosiah Rohani*, Abdul Wahab Mohammad
Department
of Chemical and Process Engineering,
Faculty
of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: rosiah@ukm.edu.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
Succinic acid displays promising
properties as a precursor for synthesizing valuable chemicals. However, its
recovery experiences difficulty due to the formation of by-products with
similar physicochemical properties, namely acetate and formate. The succinate
separation process via pressure filtration membrane technology demonstrates
polyimide (PI) membrane as a potential candidate due to its high resistance and
selectivity to many organic solvents from its imide groups, an important
feature in separation of biomass
fermentation broth. This study aims to investigate the performance of newly
synthesized PI (P84) membrane prepared by phase inversion for succinate
recovery from fermentation broth (simulated model solution is used). PI polymer
composition 14 – 17 wt%
were cast to investigate the effect of varying polymer compositions on the
performance of NF membrane determined from the recovery of succinate, and
removal of formate and acetate from ternary organic salt solutions at
concentration range between 10 – 50 g/L. PI membrane (15 wt%) shows the highest selective succinate
retention of 73%. Succinate selective retention was observed to increase
whereas rejection of by-products decreased at increasing mixed salt solution
concentration from 20 – 50
g/L. Field Emission Scanning Electron Microscope (FESEM) results showed a PI
membrane with dense and thick top layer, with porous middle substructure to
support membrane performance.
Keywords: polyimide,
nanofiltration membrane, succinate, biomass fermentation, mixed salt solution
Abstrak
Asid suksinik
mempunyai kepentingan sebagai pelopor dalam mensintesis bahan kimia yang
bernilai. Namun, pengumpulannya menghadapi kesukaran kerana pembentukan satu
lagi produk sampingan yang mempunyai sifat fizikokimia yang sama seperti asetat
dan format. Dalam proses pemisahan/pengumpulan suksinat menerusi tekanan
teknologi membran penapisan, membran poliimida (PI) didapati berpotensi sebagai
calon membran kerana ia bersifat perintang yang tinggi kepada banyak pelarut
organik dan juga mempunyai pemilihan yang tinggi ke atas air melalui kumpulan
imida yang penting dalam pengasingan sup penapaian biojisim. Oleh itu, kajian
ini bertujuan untuk menyiasat prestasi membran PI (P84) yang baru disintesis
dan disediakan dengan teknik fasa songsangan dalam bidang pengumpulan suksinat
dari sup penapaian (model simulasi digunakan). Kepekatan PI polimer sebanyak 14
– 17 wt% telah disediakan dan kesan kepekatan polimer dalam penyediaan membran
PI telah disiasat untuk mencapai membran PI berprestasi tinggi yang ditentukan dari
pengumpulan suksinat dan penyingkiran asetat dan format pada julat kepekatan
antara 10 – 50 g/L. Melalui kajian ini, membran PI (15 wt%) menunjukkan
pengumpulan suksinat tertinggi sebanyak 73%. Pengumpulan suksinat diperhatikan
meningkat manakala penyingkiran produk sampingan berkurangan dengan peningkatan
kepekatan garam campuran dari 20 – 50 g/L. FESEM yang menunjukkan lapisan atas
membran PI yang padat dan tebal serta lapisan substruktur tengah yang berliang
untuk menyokong prestasi membran PI.
Kata kunci: poliimida,
nanopenurasan, suksinat, penapaian biojisim, garam campuran
References
1.
Chimirri, F., Bosco, F., Ceccarelli, R., Venturello,
A. and Geobaldo, F. (2010). Succinic acid and its derivatives: fermentative
production using sustainable industrial agro food by-products and its
applications in the food industry. Italian Journal of Food Science, 22: 119
- 125.
2.
Sener, A., Kadiata, M. M., Ladrie`re, L. and Malaisse, W. J.
(1997). Synergistic insulinotropic action of succinate, acetate, and glucose
esters in islets from normal and diabetic rats. Endocrine, 7: 151 -
155.
3.
Kurzrock, T. and Weuster-Botz, D. (2010). Recovery of
succinic acid from fermentation broth.
Biotechnolology Letter, 32: 331 -
339.
4.
Delhomme, C., Weuster-Botz, D. and Khun, F. E. (2009).
Succinic acid from renewable resources as a C4 buildig-block chemical-a review
of the catalytic possibilities in aqueous media. Green Chemistry, 11: 13
- 26.
5.
Song, H., Lee, J. W., Choi, S., You, J. K., Hong, W. H. and
Lee, S. Y. (2007). Effects of dissolved CO2 levels on the growth of
Mannheimia succiniciproducens and succinic acid production. Biotechnology and
Bioengineering, 98: 1296 - 1304.
6.
Meynial-Salles, I., Dorotyn, S. and Soucaille, P. (2008). A
new process for the continous production of succinic acid from glucose at high
yield, titer, and productivity. Biotechnology and Bioengineering, 99:
129 - 135.
7.
Vemuri, G. N., Eiteman, M. A. and Altman, E. (2002).
Succinate production in dual-phase Escherichia
coli fermentations depends on the time of transition from aerobic to
anaerobic conditions. Journal of Industrial Microbiology and
Biotechnology, 28: 325 - 332.
8.
Guettler, M. V., Rumler, D. and Jain, M. K. (1999).
Actinobacillus succinogenes sp.nov., a novel succinic-acid-producing strain
from the bovine rumen. International Journal of Systematic
Bacteriology, 49: 207 - 216.
9.
Li, Q., Wang, D., Wu, Y., Li, W. L., Zhang, Y. J., Xing, J.
M. and Su, Z. G. (2010). One step recovery of succinic acid from fermentation
broths by crystallization. Separation and Purification Technololgy,
72: 294 - 300.
10.
Arora, M. B., Hestekin, J. A., Snyder, S. W., Martin, E. J.
S., Lin, Y. J., Donnelly, M. I. and Sanville M. C. (2007). The separation
biorector: a continuous separation process for the simultaneous production and
direct capture of organic acids. Journal of Separation Science and
Technology, 42: 2519 - 2538.
11.
Bechthold, I., Brezt, K., Kabasci, S., Kopitzky, R. and
Springer, A. (2008) Succinic acid: A new platform chemical for biobased
polymers from renewable resources. Chemical Engineering and Technology, 31:
647 - 654.
12.
McKinlay, J. B., Vieille, C. and Zeikus, J. G. (2007).
Prospects for a biobased succinate industry.
Applied Microbiology & Biotechnology.
76: 727 - 740.
13.
Huh, Y. S., Jun, Y.-S., Hong, Y. K., Song, H., Lee, S. Y. and
Hong, W. H. (2006). Effective purification of succinic acid from fermentation
broth produced by Mannheimia
succinicproducens. Process
Biochemistry, 41: 1461 - 1465.
14.
Nam, H.-G., Park, K.-M., Lim, S. S. and Mun, S. (2011).
Adsorption equilibria of succinic acid and lactic acid on amberchrom CG300C
resin. Journal of Chemical and Engineering Data, 56: 464 - 471.
15.
Cao, Y., Zhang, R., Sun, C., Cheng, T., Liu, Y. and Xian, M.
(2013). Fermentative succinate production: an emerging technology to replace
the traditional petrochemical processes.
BioMed Research International, 2013:
1 - 12.
16.
Choi, J.-H., Fukushi, K. and Yamamoto, K. (2008). A study on
the removal of organic acids from wastewaters using nanofiltration membranes. Separation
and Purification Technology, 59: 17 - 25.
17.
Staszak, K., Wozniak, M. J., Karas, Z., Staniewski, J. and
Prochaska, K. (2013). Application of nanofiltration in the process of the
separation of model fermentation broth components. Polish Journal Chemical
Technology, 15(4): 1 - 4.
18.
Yao, Z., Wu, H., Liu, H., Li, S. and Jiang, M. (2008). Method
for separation succinic acid from anaerobic fermentation broth. Chinese Patent
CN 200610086003.7
19.
Wu, H., Jiang, M., Wie, P., Lei, D., Yao, Z. and Zuo, P.
(2011). Nanofiltration method for separation of succinic acid from its
fermented broth. Chinese Patent CN 200910025531.5.
20.
Kang, S. H. and Chang, Y. K. (2005). Removal of organic acid
salts from simulated fermentation broth containing succinate by nanofiltration. Journal
of Membrane Science, 246: 49 - 57.
21.
Datta, R., Glassner, D. A., Jain, M. K. and Vick Roy, J. R.
(1992). Fermentation and purification process for succinic acid. U.S. Patent
5,168,055.
22.
Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J. and
Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid
fermentation broth. Bioresource Technology, 116: 366 -371.
23.
Vandezande, P., Li, X., Gevers, L. E. M. and Vankelecom, I.
F. J. (2009). High throughput study of phase inversion parameters for
polyimide-based SRNF membranes. Journal of Membrane Science, 330: 307 -
318.
24.
Valadez-Blanco, R. and Livingston, A. G. (2009). Solute
molecular transport through polyimide asymmetric organic solvent nanofiltration
(OSN) membranes and the effect of membrane-formation parameters on mass
transfer. Journal of Membrane Scienc, 326: 332 - 342.
25.
See-Toh, Y. H., Ferreira, F. C. and Livingston, A. G. (2007).
The influence of membrane formation parameters on the functional performance of
organic solvent nanofiltration membranes.
Journal of Membrane Science 299: 236
- 250.
26.
Vankelecom, I. F. J., De Smet, K., Gevers, L. E. M., and
Jacobs, P. A., (2005). Nanofiltration. principles and applications. Ed. de A.I. Schäfer, A.G. Fane, T.D. Waite ; pról. de Robert J.
Petersen, Elsevier.
27.
Lee, J., Chae, H.-R., Won, Y. J., Lee, K., Lee, C.-H., Lee,
H. H., Kim, I.-C. and Lee, J.-M. (2013). Graphene oxide nanoplatelets composite
membrane with hydrophilic and antifouling properties for wastewater treatment. Journal
of Membrane Science, 448: 223 - 230.
28.
Qiao, X., Chung, T.-S. and Pramoda, K. P. (2005). Fabrication
and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the
pervaporation dehydration of isopropanol.
Journal of Membrane Science, 264: 176
- 189.
29.
DOW. Dow Water and
Process Solutions - Levels of Separation of IX, RO, NF, UF and CFT (2015). DOW answer center. The DOW company.
30.
Peeters, J. M. M., Boom, J. P., Mulder, M. H. V. and
Strathmann, H. (1998). Retention measurements of nanofiltration membranes with
electrolyte solutions. Journal of Membrane Science, 145: 199 -
209.
31.
Lin, S. W., Sicairos, S. P. and Navarro, R. M. F. (2007).
Preparation, characterization and salt rejection of negatively charged
polyamide nanofiltration membranes. Journal of Mexican Chemical Society, 51:
129 - 135.
32.
Krieg, H. M., Modise, S. J., Keizer, K., and Neomagus, H. W.
J. P. (2004) Salt rejection in nanofiltration for single and binary salt
mixtures in view of sulphate removal.
Desalination, 171: 205 -215.
33.
Van der Burggen, B., Schaep, J., Wilms, D. and Vandecasteele,
C. (1999). Influence of molecular size, polarity and change on the retention of
organis molecules by nanofiltration. Journal of Membrane Science, 156: 29 -
41.