Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1491 - 1497
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-30
PRODUCTION
OF BIOGAS THROUGH ANAEROBIC DIGESTION OF Cabomba
furcata IN DIGESTER BATCH SYSTEM
(Penghasilan
Biogas Melalui Pencernaan Anaerobik daripada Cabomba
furcata di
dalam Sistem Penghadam Kelompok)
Siti Afifah Muda1,3*, Omar Syah Jehan
Elham2,3, Hassimi Abu Hasan3, Siti Rozaimah
Sheikh Abdullah3
1Section of Process, Chemical Engineering
Technology,
Universiti
Kuala Lumpur-Malaysian Institute of Chemical & Bioengineering Technology
(UniKL-MICET),
Lot
1988 Bandar Vendor Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia
2Faculty of Chemical Engineering,
Universiti
Teknologi MARA, Cawangan Johor, Kampus Pasir Gudang, 81750 Masai, Johor,
Malaysia
3Department of Chemical and Process
Engineering, Faculty of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: sitiafifahm@unikl.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Biogas is produced from decomposition of
organic waste such as sewage sludge, animal manure, and municipality solid
wastes by microorganisms in anaerobic conditions. Biogas, which consist mainly
of methane is a renewable energy source. It can be used for heating, power
generation or upgrading to natural gas quality. In this study, the anaerobic
treatability and biogas generation potential of Cabomba furcata (C. furcata) were examined in batch digesters. C. furcata collected from Chini Lake,
Pahang was utilized as a substrate in biogas production. Slurry samples of C. furcata were prepared in 2 different mixture i.e., C. furcata/water ratio (1:1, 1:2 and
1:3) and C. furcata/inoculums ratio
(1:1, 1:2 and 1:3). Throughout the experiment, the pH range was 5.5 to 7.0
while temperature range was 25 to 30 °C to enable anaerobic digestion in
mesophilic condition for a retention time of 28 days. The results showed that the maximum methane production achieved at ratio of 1:3
for both mixture C. furcata/water and
C. furcata/inoculums with production
percentages up to 1.1 and 11.9%, respectively. Moreover, the result indicated
that the production of methane increased as the retention time increased.
Therefore, native plant of C. furcata
is a great potential as a substrate in the production of biogas for future
renewable energy.
Keywords: Cabomba
furcata, methane production, anaerobic digestion, renewable energy
Abstrak
Biogas terhasil daripada penguraian sisa organik seperti
kumbuhan enapcemar, baja haiwan dan sisa pepejal perbandaran oleh
mikroorganisma dalam keadaan anaerobik. Biogas terdiri daripada metana sebagai
sumber tenaga yang boleh diperbaharui. Ia boleh digunakan untuk pemanasan,
penjanaan kuasa atau peningkatan kepada kualiti gas asli. Melalui kajian ini,
kebolehrawatan anaerobik dan kebolehan
penjanaan biogas oleh Cabomba furcata
(C. furcata) telah diperiksa di dalam
penghadam kelompok. C. furcata telah dikumpul dari Tasik Chini, Pahang dan digunakan
sebagai substrat dalam penghasilan
biogas. Sampel cair C. furcata disediakan dengan 2
campuran yang berlainan
i.e., nisbah C. furcata/air (1:1,
1:2 dan 1:3) dan nisbah C. furcata/inokulum (1:1, 1:2 dan 1:3). Sepanjang kajian dijalankan, nilai pH adalah 5.5 hingga
7.0 manakala julat suhu ialah 25 – 30 °C menjadikan keadaan operasi penghadaman
anaerobik sebagai mesofilik dan masa tahanan selama 28 hari. Keputusan kajian
menunjukkan penghasilan biogas yang maksimum berlaku pada nisbah 1:3 untuk
kedua-dua campuran C. furcata/air dan
C. furcata/inokulum dengan peratusan
penghasilan masing - masing meningkat kepada 1.1 dan 11.9%. Selain itu,
keputusan juga menunjukkan penghasilan semakin meningkat apabila masa tahanan
meningkat. Oleh itu, C. furcata
mempunyai potensi yang bagus sebagai substrat dalam penghasilan biogas untuk
tenaga yang boleh diperbaharui pada masa depan.
Kata kunci: Cabomba furcata, penghasilan metana, penghadaman anaerobik, tenaga
yang boleh diperbaharui
References
1. Gelegenis, J., Georgakakis,
D., Angelidaki, I., Christopouolou, N. and Goumenaki, M. (2007). Optimization
of biogas production from olive–oil mill wastewater, by co-digesting with
diluted poultry manure. Applied Energy,
84: 646 – 663.
2. Teodorita, A. S.,
Rutz, D., Prassl, H., Kottner, M., Finsterwalder, T., Volk, S. and Janssen, R. (2008).
Biogass Handbook.University of Southern Denmark, Denmark.
3. Kunatsa, T. and Mufundirwa,
A. (2013). Biogas production from water hyacinth case of Lake Chivero -Zimbabwe.
International Journal of Recent
Technology and Engineering, 2 (2): 138 – 142.
4. Pereira, R. G.,
Pereira, M. C. D. E., Silva, J. G., Abreu, F. L. B. and Lameira, V. J. (2011).
Production and characterization of biogas obtained from biomass of aquatic
plants. International Conference on
Renewable Energies and Power Quality (ICREPQ'11). Canary Island Convention
Centre Spain.
5. Verma, V. K.,
Singh, Y. P. and Rai, J. P. N. (2007). Biogas production from plant biomass
used for phytoremediation of industrial wastes. Bioresource Technology, 98: 1664 – 1669.
6. Department of
Agriculture, Fisheries and Forestry (2012). Cabomba. The State of Queensland Fact Sheet. Access from https://www.daf.qld.gov.au/__data/assets/pdf_file/0005/72896/IPA-Cabomba-PP30.pdf
[10 February 2013].
7. Sara, S. R. and Veronica,
M. S. (2009). Biogas production from waste of the shrimp manufacture in Sisimiut.
Arctic Technology: pp. 1 – 48.
8. Neo, S.,
Vintila, T. and Bura, M. (2012). Conversion of agriculture wastes to biogas
using as inoculums cattle manure and activated sludge. Scientific papers: Animals
Sciences and Biotechnologies, 45(1): 328 – 334.
9. Sunarso, Johari,
S., Widiasa, I. N. and Budiyono. (2012). The effect of feed to inoculums ratio
on biogas production rate from cattle manure using ramen fluids as inoculums. International Journal of Waste Resources,
2(1):1 – 4.
10. Abu-Dahrieh, J.
K., Orozco, A., Ahmad, M. and Rooney, D. (2011). The potential for biogas
production from grass. Jordan International
Energy Conference: pp. 1 – 8.
11. Mateescu,
C. and Constantinescu, I. (2011). Comparative analysis of inoculums biomass for
biogas potential in the anaerobic digestion. U.P.B. Scientific Bulletin: Series B,
73(3): 99 – 104.
12. Khanal,
S. K., Chen, W. H., Li, L. and Sung, S. (2004). Biological hydrogen production:
Effects of Ph and intermediate product. International Journal Hydrogen Energy, 29:
1123 – 1131.
13. Deublein D. and Steinhauser,
A. (2011). Biogas from waste and renewable resources. An introduction. 2nd
Edition, Revised and Expended edited, Wiley-VCH, Weinheim, Germany.
14. Franco,
A., Mosquera-Corral, A., Campos, J. L. and Roca, E. (2007). Learning to operate
anaerobic bioreactors. Communicating Current Research and Educational Topics and Trends in
Applied Microbiology: pp. 618 – 627.
15. Neves, L., Oliveira, R. and Alves,
M. (2003). Influence of inoculum activity on the bio-methanization of a kitchen
waste under different waste/inoculum ratios. Process Biochemistry, 39(12): 2019 – 2024.
16. Zimeminski, K. and Frac, M.
(2012). Methane fermentation process as anaeorbic aigestion of biomass: transfromations,
stages and microorganism. African Journal
of Biotechnology, 11(18): 4127 – 4139.
17. Ozmen, P. and Aslanzadeh,
S. (2009). Biogas production from municipal waste mixed with different portions
of orange peel. Synopsis of Master thesis. University of Boras, Sweden.
18. Tchobanoglous, G., Burton,
F. L. and Stensel, H. D. (2003). Waste-water engineering: Treatment and reuse.
Fourth edition. Tata McGraw-Hill Publishing Company Limited, New Delhi: pp.1819.