Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1491 - 1497

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-30

 

 

 

PRODUCTION OF BIOGAS THROUGH ANAEROBIC DIGESTION OF Cabomba furcata IN DIGESTER BATCH SYSTEM

 

(Penghasilan Biogas Melalui Pencernaan Anaerobik daripada Cabomba furcata di dalam Sistem Penghadam Kelompok)

 

Siti Afifah Muda1,3*, Omar Syah Jehan Elham2,3, Hassimi Abu Hasan3, Siti Rozaimah Sheikh Abdullah3

 

1Section of Process, Chemical Engineering Technology,

Universiti Kuala Lumpur-Malaysian Institute of Chemical & Bioengineering Technology (UniKL-MICET),

Lot 1988 Bandar Vendor Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia

2Faculty of Chemical Engineering,

Universiti Teknologi MARA, Cawangan Johor, Kampus Pasir Gudang, 81750 Masai, Johor, Malaysia

3Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 

 

*Corresponding author: sitiafifahm@unikl.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Biogas is produced from decomposition of organic waste such as sewage sludge, animal manure, and municipality solid wastes by microorganisms in anaerobic conditions. Biogas, which consist mainly of methane is a renewable energy source. It can be used for heating, power generation or upgrading to natural gas quality. In this study, the anaerobic treatability and biogas generation potential of Cabomba furcata (C. furcata) were examined in batch digesters. C. furcata collected from Chini Lake, Pahang was utilized as a substrate in biogas  production.  Slurry samples of C. furcata were prepared in 2 different mixture i.e., C. furcata/water ratio (1:1, 1:2 and 1:3) and C. furcata/inoculums ratio (1:1, 1:2 and 1:3). Throughout the experiment, the pH range was 5.5 to 7.0 while temperature range was 25 to 30 °C to enable anaerobic digestion in mesophilic condition for a retention time of 28 days.  The results showed that the maximum  methane production achieved at ratio of 1:3 for both mixture C. furcata/water and C. furcata/inoculums with production percentages up to 1.1 and 11.9%, respectively. Moreover, the result indicated that the production of methane increased as the retention time increased. Therefore, native plant of C. furcata is a great potential as a substrate in the production of biogas for future renewable energy.

 

Keywords:  Cabomba furcata, methane production, anaerobic digestion, renewable energy

 

Abstrak

Biogas terhasil daripada penguraian sisa organik seperti kumbuhan enapcemar, baja haiwan dan sisa pepejal perbandaran oleh mikroorganisma dalam keadaan anaerobik. Biogas terdiri daripada metana sebagai sumber tenaga yang boleh diperbaharui. Ia boleh digunakan untuk pemanasan, penjanaan kuasa atau peningkatan kepada kualiti gas asli. Melalui kajian ini, kebolehrawatan anaerobik dan  kebolehan penjanaan biogas oleh Cabomba furcata (C. furcata) telah diperiksa di dalam penghadam kelompok. C. furcata  telah dikumpul  dari Tasik Chini, Pahang  dan  digunakan  sebagai  substrat  dalam  penghasilan biogas.   Sampel   cair  C. furcata  disediakan  dengan  2  campuran  yang  berlainan  i.e.,  nisbah  C. furcata/air   (1:1, 1:2  dan 1:3)   dan   nisbah C. furcata/inokulum (1:1, 1:2 dan 1:3).  Sepanjang  kajian dijalankan, nilai pH adalah 5.5 hingga 7.0 manakala julat suhu ialah 25 – 30 °C menjadikan keadaan operasi penghadaman anaerobik sebagai mesofilik dan masa tahanan selama 28 hari. Keputusan kajian menunjukkan penghasilan biogas yang maksimum berlaku pada nisbah 1:3 untuk kedua-dua campuran C. furcata/air dan C. furcata/inokulum dengan peratusan penghasilan masing - masing meningkat kepada 1.1 dan 11.9%. Selain itu, keputusan juga menunjukkan penghasilan semakin meningkat apabila masa tahanan meningkat. Oleh itu, C. furcata mempunyai potensi yang bagus sebagai substrat dalam penghasilan biogas untuk tenaga yang boleh diperbaharui pada masa depan.

 

Kata kunci:  Cabomba furcata, penghasilan metana, penghadaman anaerobik, tenaga yang boleh diperbaharui

 

References

1.       Gelegenis, J., Georgakakis, D., Angelidaki, I., Christopouolou, N. and Goumenaki, M. (2007). Optimization of biogas production from olive–oil mill wastewater, by co-digesting with diluted poultry manure. Applied Energy, 84: 646 – 663.

2.       Teodorita, A. S., Rutz, D., Prassl, H., Kottner, M., Finsterwalder, T., Volk, S. and Janssen, R. (2008). Biogass Handbook.University of Southern Denmark, Denmark.

3.       Kunatsa, T. and Mufundirwa, A. (2013). Biogas production from water hyacinth case of Lake Chivero -Zimbabwe. International Journal of Recent Technology and Engineering, 2 (2): 138 – 142.

4.       Pereira, R. G., Pereira, M. C. D. E., Silva, J. G., Abreu, F. L. B. and Lameira, V. J. (2011). Production and characterization of biogas obtained from biomass of aquatic plants. International Conference on Renewable Energies and Power Quality (ICREPQ'11). Canary Island Convention Centre Spain.

5.       Verma, V. K., Singh, Y. P. and Rai, J. P. N. (2007). Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresource Technology, 98: 1664 – 1669.

6.       Department of Agriculture, Fisheries and Forestry (2012). Cabomba. The State of Queensland Fact Sheet. Access from https://www.daf.qld.gov.au/__data/assets/pdf_file/0005/72896/IPA-Cabomba-PP30.pdf [10 February 2013].

7.       Sara, S. R. and Veronica, M. S. (2009). Biogas production from waste of the shrimp manufacture in Sisimiut. Arctic Technology: pp. 1 – 48.

8.       Neo, S., Vintila, T. and Bura, M. (2012). Conversion of agriculture wastes to biogas using as inoculums cattle manure and activated sludge. Scientific papers: Animals Sciences and Biotechnologies, 45(1): 328 – 334.

9.       Sunarso, Johari, S., Widiasa, I. N. and Budiyono. (2012). The effect of feed to inoculums ratio on biogas production rate from cattle manure using ramen fluids as inoculums. International Journal of Waste Resources, 2(1):1 – 4.

10.    Abu-Dahrieh, J. K., Orozco, A., Ahmad, M. and Rooney, D. (2011). The potential for biogas production from grass. Jordan International Energy Conference: pp. 1 – 8.

11.  Mateescu, C. and Constantinescu, I. (2011). Comparative analysis of inoculums biomass for biogas potential in the anaerobic digestion. U.P.B. Scientific Bulletin: Series B, 73(3): 99 – 104.

12.  Khanal, S. K., Chen, W. H., Li, L. and Sung, S. (2004). Biological hydrogen production: Effects of Ph and intermediate product. International Journal Hydrogen Energy, 29: 1123 – 1131.

13.    Deublein D. and Steinhauser, A. (2011). Biogas from waste and renewable resources. An introduction. 2nd Edition, Revised and Expended edited, Wiley-VCH, Weinheim, Germany.

14.  Franco, A., Mosquera-Corral, A., Campos, J. L. and Roca, E. (2007). Learning to operate anaerobic bioreactors. Communicating Current Research and Educational Topics and Trends in Applied Microbiology: pp. 618 – 627.

15.    Neves, L., Oliveira, R. and Alves, M. (2003). Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochemistry, 39(12): 2019 – 2024.

16.    Zimeminski, K. and Frac, M. (2012). Methane fermentation process as anaeorbic aigestion of biomass: transfromations, stages and microorganism. African Journal of Biotechnology, 11(18): 4127 – 4139.

17.    Ozmen, P. and Aslanzadeh, S. (2009). Biogas production from municipal waste mixed with different portions of orange peel. Synopsis of Master thesis. University of Boras, Sweden.

18.    Tchobanoglous, G., Burton, F. L. and Stensel, H. D. (2003). Waste-water engineering: Treatment and reuse. Fourth edition. Tata McGraw-Hill Publishing Company Limited, New Delhi: pp.1819.

 




Previous                    Content                    Next