Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1510 - 1514
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-32
REDUCTION
BEHAVIOUR OF TUNGSTEN DIOXIDE BY VARIOUS CONCENTRATION OF CARBON MONOXIDE
(Kelakuan
Penurunan Tungsten Dioksida oleh Kepekatan Karbon Monoksida yang Berbeza)
Fairous Salleh1*, Alinda Samsuri1,2, Tengku
Shafazila Tengku Saharuddin1,
Mohamed Wahab Mohamed Hisham1, Rizafizah Othaman1,
Mohd. Ambar Yarmo1
1Catalyst Research Group, School of Chemical Sciences
and Food Technology,
Faculty
of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Centre for Defense Foundation Studies,
Universiti
Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
*Corresponding author: fairoussalleh@gmail.com
Received: 24
February 2015; Accepted: 27 October 2015
Abstract
The reduction behaviour of tungsten
dioxide (WO2) under both non-isothermal and isothermal conditions in
various concentrations of carbon monoxide (CO) were investigated by using
temperature-programmed reduction (TPR) and X-ray diffractometry (XRD)
techniques. The influences of carbon monoxide concentration (20 and 40% v/v CO
in N2) on the reducibility of WO2 to tungsten metal W
have been investigated in the temperature range 40 – 900 ºC. The TPR profile
shows that reduction using 40% CO produce higher thermal conductivity detector
(TCD) signal in comparison by using 20 % CO. XRD results show that, by
increasing the concentration of CO, the intensity of WO2 decreases
and tungsten carbide (WC) peak appeared. Moreover, holding the reduction time
for 30 min in 20 and 40% of CO resulted in the formation of new peak of tungsten
hemi carbide (W2C) and WC, respectively. It can be concluded that by
using CO, reduction steps comprise of WO2 → W → W2C →
WC. The reduction behaviour of WO2
is strongly dependent on the concentration of CO and hold time of reaction. Furthermore,
excess of CO by isothermal reduction results in the formation of WC.
Keywords: tungsten dioxide, tungsten, tungsten carbide, carbon
monoxide
Abstrak
Kelakuan penurunan tungsten dioksida (WO2) melalui penurunan
bukan isotermal dan isotermal menggunakan kepekatan karbon monoksida (CO) berbeza
telah dikaji dengan menggunakan suhu penurunan berprogram (TPR) dan pembelauan
sinar-X (XRD). Kesan kepekatan karbon monoksida (20 dan 40% v/v CO dalam N2)
terhadap kadar penurunan WO2 kepada W telah dikaji dalam suhu 40 –
900 °C. Profil TPR menunjukkan bahawa penurunan dengan menggunakan 40% CO
menghasilkan isyarat TCD lebih tinggi berbanding dengan menggunakan 20% CO.
Keputusan XRD menunjukkan bahawa, dengan meningkatkan kepekatan CO, keamatan WO2
menurun dan puncak tungsten karbida (WC) muncul. Selain itu, dengan penambahan
masa tindak balas selama 30 minit menggunakan 20 dan 40% CO menghasilkan puncak
baru masing-masing tungsten hemi karbida (W2C) dan WC. Dapat
disimpulkan bahawa dengan menggunakan CO, langkah penurunan terdiri daripada WO2
→ W → W2C → WC. Tingkahlaku
penurunan WO2 amat bergantung kepada kepekatan CO dan penambahan masa
tindak balas. Tambahan pula, pendedahan kepada CO berlebihan daripada penurunan
isotermal menyebabkan pembentukan WC.
Kata
kunci: tungsten dioksida, tungsten, tungsten karbida,
karbon monoksida
References
1.
Ricceri, R. and Matteazzi,
P. (2003). A study of formation of nanometric W by room temperature
mechanosynthesis. Journal of Alloys and Compounds, 358: 71 – 75.
2.
Baghdasaryan, A. M., Niazyan, O. M., Khachatryan, H. L. and Kharatyan,
S. L. (2014). DTA/TG study of tungsten oxide and ammonium tungstate reduction
by (Mg + C) combined reducers at non-isothermal conditions. International
Journal Refractory Metals & Hard Materials. 43: 216 – 221.
3.
Jiqiao, L., Baiyun, H. and Zhiqiang, Z. (2001). Determination
of physical characterization of tungsten oxides. International Journal Refractory Metals
& Hard Materials, 19 (2): 79 – 84.
4.
Kwak, J. H., Han, G. Y. and Yoon, K. J. (2013). Zirconia supported
tungsten oxides for cyclic production of syngas and hydrogen by methane
reforming and water splitting. International
Journal of Hydrogen Energy, 38: 8293 – 8305.
5.
Zaki, M. I., Fouad, N. E., Mansour, S. A. A. and Muftah, A.
I. (2011). Temperature-programmed and X-ray diffractometry studies of hydrogen
reduction course and products of WO3 powder: Influence of reduction
parameters. Thermochimica Acta, 523 (1–2): 90 – 96.
6.
Venables, D. S. and Brown, M. E. (1997). Reduction of
Tungsten Oxides with Carbon Monoxide. Thermochimica Acta, 291: 131 – 140.
7.
Xiang-wei, W. U., Jing-song, L. U. O. and Bi-zhi, L. U.
(2009). crystal growth of tungsten during hydrogen reduction of tungsten oxide
at high temperature. Transactions of
Nonferrous Metals Society of China, 19: 785 - 789.