Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1510 - 1514

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-32

 

 

 

REDUCTION BEHAVIOUR OF TUNGSTEN DIOXIDE BY VARIOUS CONCENTRATION OF CARBON MONOXIDE

 

(Kelakuan Penurunan Tungsten Dioksida oleh Kepekatan Karbon Monoksida yang Berbeza)

 

Fairous Salleh1*, Alinda Samsuri1,2, Tengku Shafazila Tengku Saharuddin1,

Mohamed Wahab Mohamed Hisham1, Rizafizah Othaman1, Mohd. Ambar Yarmo1

 

1Catalyst Research Group, School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Centre for Defense Foundation Studies,

Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia

 

*Corresponding author: fairoussalleh@gmail.com

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

The reduction behaviour of tungsten dioxide (WO2) under both non-isothermal and isothermal conditions in various concentrations of carbon monoxide (CO) were investigated by using temperature-programmed reduction (TPR) and X-ray diffractometry (XRD) techniques. The influences of carbon monoxide concentration (20 and 40% v/v CO in N2) on the reducibility of WO2 to tungsten metal W have been investigated in the temperature range 40 – 900 ºC. The TPR profile shows that reduction using 40% CO produce higher thermal conductivity detector (TCD) signal in comparison by using 20 % CO. XRD results show that, by increasing the concentration of CO, the intensity of WO2 decreases and tungsten carbide (WC) peak appeared. Moreover, holding the reduction time for 30 min in 20 and 40% of CO resulted in the formation of new peak of tungsten hemi carbide (W2C) and WC, respectively. It can be concluded that by using CO, reduction steps comprise of WO2 → W → W2C → WC.  The reduction behaviour of WO2 is strongly dependent on the concentration of CO and hold time of reaction. Furthermore, excess of CO by isothermal reduction results in the formation of WC.

 

Keywords:  tungsten dioxide, tungsten, tungsten carbide, carbon monoxide

 

Abstrak

Kelakuan penurunan tungsten dioksida (WO2) melalui penurunan bukan isotermal dan isotermal menggunakan kepekatan karbon monoksida (CO) berbeza telah dikaji dengan menggunakan suhu penurunan berprogram (TPR) dan pembelauan sinar-X (XRD). Kesan kepekatan karbon monoksida (20 dan 40% v/v CO dalam N2) terhadap kadar penurunan WO2 kepada W telah dikaji dalam suhu 40 – 900 °C. Profil TPR menunjukkan bahawa penurunan dengan menggunakan 40% CO menghasilkan isyarat TCD lebih tinggi berbanding dengan menggunakan 20% CO. Keputusan XRD menunjukkan bahawa, dengan meningkatkan kepekatan CO, keamatan WO2 menurun dan puncak tungsten karbida (WC) muncul. Selain itu, dengan penambahan masa tindak balas selama 30 minit menggunakan 20 dan 40% CO menghasilkan puncak baru masing-masing tungsten hemi karbida (W2C) dan WC. Dapat disimpulkan bahawa dengan menggunakan CO, langkah penurunan terdiri daripada WO2 → W → W2C → WC.  Tingkahlaku penurunan WO2 amat bergantung kepada kepekatan CO dan penambahan masa tindak balas. Tambahan pula, pendedahan kepada CO berlebihan daripada penurunan isotermal menyebabkan pembentukan WC.

 

Kata kunci:  tungsten dioksida, tungsten, tungsten karbida, karbon monoksida

 

References

1.       Ricceri, R. and Matteazzi, P. (2003). A study of formation of nanometric W by room temperature mechanosynthesis. Journal of Alloys and Compounds, 358: 71 – 75.

2.       Baghdasaryan, A. M., Niazyan, O. M., Khachatryan, H. L. and Kharatyan, S. L. (2014). DTA/TG study of tungsten oxide and ammonium tungstate reduction by (Mg + C) combined reducers at non-isothermal conditions. International Journal Refractory Metals & Hard Materials. 43: 216 – 221.

3.       Jiqiao, L., Baiyun, H. and Zhiqiang, Z. (2001). Determination of physical characterization of tungsten oxides.  International Journal Refractory Metals & Hard Materials, 19 (2): 79 – 84.

4.       Kwak, J. H., Han, G. Y. and Yoon, K. J. (2013). Zirconia supported tungsten oxides for cyclic production of syngas and hydrogen by methane reforming and water splitting. International Journal of Hydrogen Energy, 38: 8293 – 8305.

5.       Zaki, M. I., Fouad, N. E., Mansour, S. A. A. and Muftah, A. I. (2011). Temperature-programmed and X-ray diffractometry studies of hydrogen reduction course and products of WO3 powder: Influence of reduction parameters. Thermochimica Acta, 523 (1–2): 90 – 96.

6.       Venables, D. S. and Brown, M. E. (1997). Reduction of Tungsten Oxides with Carbon Monoxide. Thermochimica Acta, 291: 131 – 140.

7.       Xiang-wei, W. U., Jing-song, L. U. O. and Bi-zhi, L. U. (2009). crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature. Transactions of Nonferrous Metals Society of China, 19: 785 - 789.

 

 




Previous                    Content                    Next