Malaysian Journal of Analytical Sciences Vol 20 No 6
(2016): 1286 - 1298
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-07
The Influence of
Calcination Temperature on Iron Oxide (α-Fe2O3) towards CO2 Adsorption Prepared
by Simple Mixing Method
(Kesan
Suhu Pengkalsinan Ferum Oksida (α-Fe2O3) Disediakan Melalui
Kaedah Campuran Ringkas Terhadap Penjerapan CO2)
Azizul Hakim1*, Mohd. Ambar Yarmo1,
Tengku Sharifah Marliza1,2, Maratun Najiha Abu Tahari1,
Wan Zurina Samad1, Muhammad Rahimi Yusop1,
Mohamed Wahab Mohamed Hisham1, Norliza Dzakaria1,3
1Catalysis Research Group, School of Chemical Sciences
and Food Technology, Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
2Catalysis
Science and Technology Research Centre, Faculty of Science,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3School
of Chemistry and Environmental, Faculty of Applied Science,
University Teknologi Mara (UiTM) Negeri Sembilan,
Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah,
Negeri Sembilan, Malaysia
*Corresponding author: azizulhakim2442@gmail.com
Received: 7
February 2016; Accepted: 3 July 2016
Abstract
Synthesized iron oxide, α-Fe2O3
used for CO2 capturing was prepared by a simple mixing method and
calcined at temperatures in a range of 350 – 850 °C. CO2 adsorption
isotherms at 25 °C and 1 atm found that the sample namely s450 that calcined at
450 °C gave the highest CO2 adsorption activity with the adsorption
capacity of 17.0 mgCO2/gadsorbent. Monodentate
carbonate, bidentate carbonate and bicarbonates formation were observed on s450
through the IR spectra. The basicity of s450 was identified by chemisorption of
CO-TPD which contains weak, medium and strong basic sites with CO total
adsorbed amount of 1.99 cm3/g.
It was found that s450 calcined at 450 °C has certain crystallite peaks
that abruptly increased through the XRD diffractogram. The texture properties
of s450 generated high porosity and more uniform sphere shape particle size
with high surface area (50.5 m2/g). Furthermore, it is composed of
trimodal distribution for pore size distribution curve desirable for CO2
adsorption.
Keywords: CO2 capture, adsorption, iron oxide, solid adsorbent,
porosity
Abstrak
Penjerapan CO2 terhadap ferum
oksida, α-Fe2O3 yang disintesis melalui kaedah campuran
ringkas dan dikalsin pada suhu 350-850 °C. Penjerapan isoterma CO2
pada suhu bilik, 25 °C and 1 atm mendapati sampel s450 yang dikalsin pada suhu
450 °C menunjukkan aktiviti penjerapan CO2 paling tinggi dengan keupayaan
penjerapan sebanyak 17.0 mgCO2/gpenjerap.
Spektrum IR telah membuktikan pembentukan spesis monodentat karbonat, bidentat
karbonat dan bikarbonat pada s450. Sifat bes s450 yang dikenalpasti menggunakan
jerapan kimia CO-TPD dimana jumlah CO yang dijerap oleh tapak bes lemah,
sederhana dan kuat adalah 1.99 cm3/g. Difraktogram XRD pula menunjukkan terdapat
beberapa puncak kekisi yang meningkat. Tekstur s450 pula mempunyai keporosan
yang tinggi dan bentuk sfera yang lebih sekata serta luas permukaan yang tinggi
(50.5 m2/g). Tambahan lagi, graf taburan saiz liang s450 juga
terdiri daripada taburan jenis trimodal yang menjadi salah satu faktor penting
dalam penjerapan CO2.
Kata
kunci: penjerapan CO2, penjerapan, ferum
oksida, penjerapan pepejal, keporosan
References
1.
Gagnon,
S. C. and Barton, M. A. (1994). Ecocentric and anthropocentric attitudes toward
the environment. Journal of Environmental
Psychology, 14: 149 – 157.
2.
Song,
C. S. (2006). Global challenges and
strategies for control, conversion and utilization of CO2 for sustainable
development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115: 2 – 32.
3.
Global
Monitoring Division, National Oceanic and Atmospheric Administration (NOAA),
U.S. Department of Commerce. 2015. Available from http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo
_full. [Access online 24 September 2015].
4.
Freund,
H. J. and Roberts, M. W. (1996). Surface chemistry of
carbon dioxide.
Surface Science Reports, 25: 225 – 273.
5.
Son,
W. J., Choi, J. S. and Ahn, W. S. (2008) Adsorptive removal
of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials, 113:
31 – 40.
6.
Abanades,
J. C. (2002). The maximum capture
efficiency of CO2 using a carbonation/ calcination cycle of CaO/CaCO3,
Chemical Engineering Journal, 90: 303 – 306.
7.
Kwon, J. H., Dai, M., Halls, M. D., Langereis, E., Chabal, Y. J. and Gordon, R. G. (2009). In situ infrared characterization during
atomic layer deposition of lanthanum oxide. Journal of Physical Chemistry C., 113: 654 – 660.
8.
Rosynek, M. P. and
Magnuson, D. T. (1977).
Infrared study of CO2 adsorption on lanthanum
sesquioxide and trihydroxide. Journal of
Catalysis, 48: 417 – 421.
9.
Okawa,
Y. and Tanaka, K. (1995). STM investigation of the
reaction of Ag-O added rows with CO2 on a Ag (ll0) surface. Surface Science, 344: 1207 – 1212.
10.
Yoshikawa, K., Sato, H., Kaneeda, M. and Kondo, J. M. (2014). Synthesis and analysis
of CO2 adsorbents based on cerium oxide. Journal of CO2 Utilization, 8: 34 – 38.
11.
Wan Isahak, W. N. R., Che
Ramli, Z. A., Ismail, M. W.,
Ismail, K., Yusop, R. M., Mohamed Hisham, M. W. and Yarmo, M. A. (2013). Adsorption–desorption
of CO2 on different type of copper oxides surfaces: Physical and chemical
attractions studies. Journal of CO2 Utilization, 2: 8 – 15.
12.
Hakim, A., Wan
Isahak, W. N. R., Abu
Tahari, M. N., Yusop, M. R., Mohamed Hisham, M. W., and Yarmo,
M. A. (2014). Temperature programmed desorption of carbon dioxide for activated
carbon supported nickel oxide: The adsorption and desorption studies. Advanced
Materials Research, 1087:
45 – 49.
13.
Seyller,
T., Borgmann, D. and Wedler. G. (1998). Interaction of CO2 with
Cs-promoted Fe (110) as compared to Fe (110) /K + CO2. Surface Science, 400: 63 – 79.
14.
Ramis,
G., Busca, G. and Lorenzelli. V. (1991). Low-temperature CO2 adsorption on
metal oxides: Spectroscopic characterization of some weakly adsorbed species. Materials Chemistry and Physics, 29: 425 – 435.
15.
Ferretto,
L. and Glisenti, A. (2002). Study of the surface acidity of an hematite powder. Journal of Molecular Catalysis A: Chemical,
187: 119 – 128.
16.
Lefevre.
G. (2004). In situ Fourier-transform infrared
spectroscopy studies of inorganic ions adsorption on metal oxides and
hydroxides.
Advance in Colloid and Interface Science,
107: 109 – 123.
17.
Baltrusaitis.
J., Schuttlefield, J., Zeitler, E. and Grassian, V. H. (2011). Carbon dioxide adsorption
on oxide nanoparticle surfaces. Chemical
Engineering Journal, 170: 471 – 481.
18.
Ismail,
H. M., Cadenhead D. A. and Zaki, M. I. (1997). Surface reactivity of iron oxide pigmentary
powders toward atmospheric components: XPS, FESEM, and gravimetry of CO and CO2
adsorption.
Journal of Colloid and Interface Science,
194: 482 – 488.
19.
Dong,
W. T., Wu, S. X., Chen, D. P., Jiang, X. W. and Zhu, C. S. (2000). Preparation
of α-Fe2O3 nanoparticles by sol-gel process with
inorganic iron salt. Chemistry
Letters, 496 – 497.
20.
Condon,
J. B. (2006). Surface area and
porosity determinations by physisorption measurements and theory, 1st ed., Elsevier, UK: pp. 1 – 28.
21.
Hu,
Z. H., Srinivasan, M. P. and Ni, Y. M. (2001). Novel activation process for preparing highly
microporous and mesoporous activated carbons. Carbon, 39: 877 – 886.
22.
Puziy, A. M., Poddubnaya, O. I., Martinez-Alonso, A.,
Suarez-Garcia, F. and Tascon, J. M. D. (2002). Synthetic carbons activated with phosphoric
acid II. Porous structure. Carbon, 40: 1507 – 1519.
23.
Kennedy, L. J., Mohan das, K. and Sekaran, G. (2004). Integrated biological and
catalytic oxidation of organics/ inorganics in tannery wastewater by rice husk
based mesoporous activated carbon-Bacillus sp. Carbon, 42: 2399 – 2407.
24.
Sing,
K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A.,
Rouquerol, J. and Siemieniewska, T. (1985). Reporting physisorption data for
gas/solid systems with special reference to the determination of surface area
and porosity. International Union of Pure
and Applied Chemistry, 57 (4): 603 – 619.
25.
Gauden,
O. A., Terzyk, A. P., Jaroniec, M. and Kowalczyk, P. (2007). Bimodal pore size
distributions for carbons: Experimental results and computational studies. Journal of Colloid and Interface Science,
310: 205 – 216.
26.
Choudhary,
V. R., Mulla, S. A. R. and Uphade, B. S. (1999). Oxidative coupling of methane over alkaline
earth oxides deposited on commercial support pre-coated with rare earth oxides. Fuel, 78: 427 – 437.
27.
Kus,
S., Otremba, M., Torz, A. and Taniewski, M. (2002). Further evidence of
responsibility of impurities in MgO for variability in its basicity and
catalytic performance in oxidative coupling of methane. Fuel, 81: 1755 – 1760.
28.
Di
Cosimo, J. I., Diez, V. K., Xu, M., Iglesia, E. and Apesteguia, C. R. (1998). Structure and surface and
catalytic properties of Mg-Al basic oxides. Journal
of Catalysis, 178: 499 – 510.
29.
Su,
C. M. and Suarez, D. L. (1997). In situ infrared speciation of adsorbed
carbonate on aluminium and iron oxides. Clays
and Clay Mineral, 45(6): 814 – 825.
30.
Rebenstorf,
B. (1991). Modified chromium/silica gel catalysts: An FTIR study of the
addition of alkali metal ions. Acta
Chemica Scandinavica, 45: 1012 – 1017.
31.
Belskaya,
O. B., Danilova, I. G., Kazakov, M. O., Mironenko, R. M., Lavrenov, A. V. and Likholobov,
V. A. (2012). FTIR spectroscopy of adsorbed probe molecules for analyzing the
surface properties of supported Pt (Pd) Catalysts, In T. Theophile (Ed.). Infrared
Spectroscopy - Materials Science, Engineering and Technology, In Tech.,
Croatia: pp. 149 – 178
32.
Chauhan,
S. M. and Chakrabarty, B. S. (2014). Lead
(Pb) doped fluoride nanocrystals: structural and optical properties. International Journal of Advanced Research,
2 (7): 607 – 614.
33.
Bishop,
J. L., Murad, E., Madejova, J., Komadel, P., Wagner, U. and Scheinost, A. C. (1999).
Visible, Mossbauer and infrared spectroscopy of dioctahedral smectites:
Structural analyses of the Fe-bearing smectites Sampor, SWy-1 and SWa-1: 11th International Clay
Conference, Ottawa: pp. 413 – 419.
34.
Taylor,
R. M. (1980). Formation and properties of Fe (II) Fe (III) hydroxyl-carbonate
and its possible significance in soil formation. Clay Mineral, 15: 369 – 382.