Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1286 - 1298

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-07

 

 

 

The Influence of Calcination Temperature on Iron Oxide  (α-Fe2O3) towards CO2 Adsorption Prepared by Simple Mixing Method

 

(Kesan Suhu Pengkalsinan Ferum Oksida (α-Fe2O3) Disediakan Melalui Kaedah Campuran Ringkas Terhadap Penjerapan CO2)

 

Azizul Hakim1*, Mohd. Ambar Yarmo1, Tengku Sharifah Marliza1,2, Maratun Najiha Abu Tahari1,

Wan Zurina Samad1, Muhammad Rahimi Yusop1, Mohamed Wahab Mohamed Hisham1, Norliza Dzakaria1,3

 

1Catalysis Research Group, School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Catalysis Science and Technology Research Centre, Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3School of Chemistry and Environmental, Faculty of Applied Science,

University Teknologi Mara (UiTM) Negeri Sembilan,

Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author: azizulhakim2442@gmail.com

 

 

Received: 7 February 2016; Accepted: 3 July 2016

 

 

Abstract

Synthesized iron oxide, α-Fe2O3 used for CO2 capturing was prepared by a simple mixing method and calcined at temperatures in a range of 350 – 850 °C. CO2 adsorption isotherms at 25 °C and 1 atm found that the sample namely s450 that calcined at 450 °C gave the highest CO2 adsorption activity with the adsorption capacity of 17.0 mgCO2/gadsorbent. Monodentate carbonate, bidentate carbonate and bicarbonates formation were observed on s450 through the IR spectra. The basicity of s450 was identified by chemisorption of CO-TPD which contains weak, medium and strong basic sites with CO total adsorbed amount of 1.99 cm3/g.  It was found that s450 calcined at 450 °C has certain crystallite peaks that abruptly increased through the XRD diffractogram. The texture properties of s450 generated high porosity and more uniform sphere shape particle size with high surface area (50.5 m2/g). Furthermore, it is composed of trimodal distribution for pore size distribution curve desirable for CO2 adsorption.

 

Keywords:  CO2 capture, adsorption, iron oxide, solid adsorbent, porosity

 

Abstrak

Penjerapan CO2 terhadap ferum oksida, α-Fe2O3 yang disintesis melalui kaedah campuran ringkas dan dikalsin pada suhu 350-850 °C. Penjerapan isoterma CO2 pada suhu bilik, 25 °C and 1 atm mendapati sampel s450 yang dikalsin pada suhu 450 °C menunjukkan aktiviti penjerapan CO2 paling tinggi dengan keupayaan penjerapan sebanyak 17.0 mgCO2/gpenjerap. Spektrum IR telah membuktikan pembentukan spesis monodentat karbonat, bidentat karbonat dan bikarbonat pada s450. Sifat bes s450 yang dikenalpasti menggunakan jerapan kimia CO-TPD dimana jumlah CO yang dijerap oleh tapak bes lemah, sederhana dan kuat adalah 1.99 cm3/g.  Difraktogram XRD pula menunjukkan terdapat beberapa puncak kekisi yang meningkat. Tekstur s450 pula mempunyai keporosan yang tinggi dan bentuk sfera yang lebih sekata serta luas permukaan yang tinggi (50.5 m2/g). Tambahan lagi, graf taburan saiz liang s450 juga terdiri daripada taburan jenis trimodal yang menjadi salah satu faktor penting dalam penjerapan CO2.

 

Kata kunci:  penjerapan CO2, penjerapan, ferum oksida, penjerapan pepejal, keporosan

 

References

1.       Gagnon, S. C. and Barton, M. A. (1994). Ecocentric and anthropocentric attitudes toward the environment. Journal of Environmental Psychology, 14: 149 – 157.

2.       Song, C. S. (2006). Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115: 2 – 32.

3.       Global Monitoring Division, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce. 2015. Available from http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo _full. [Access online 24 September 2015].

4.       Freund, H. J. and Roberts, M. W. (1996). Surface chemistry of carbon dioxide. Surface Science Reports, 25: 225 – 273.

5.       Son, W. J., Choi, J. S. and Ahn, W. S. (2008) Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials, 113: 31 – 40.

6.       Abanades, J. C. (2002). The maximum capture efficiency of CO2 using a carbonation/ calcination cycle of CaO/CaCO3, Chemical Engineering Journal, 90: 303 – 306.

7.       Kwon, J. H., Dai, M., Halls, M. D., Langereis, E., Chabal, Y. J. and Gordon, R. G. (2009). In situ infrared characterization during atomic layer deposition of lanthanum oxide. Journal of Physical Chemistry C., 113: 654 – 660.

8.       Rosynek, M. P. and Magnuson, D. T. (1977). Infrared study of CO2 adsorption on lanthanum sesquioxide and trihydroxide. Journal of Catalysis, 48: 417 – 421.

9.       Okawa, Y. and Tanaka, K. (1995). STM investigation of the reaction of Ag-O added rows with CO2 on a Ag (ll0) surface. Surface Science, 344: 1207 – 1212.

10.    Yoshikawa, K., Sato, H., Kaneeda, M. and Kondo, J. M. (2014). Synthesis and analysis of CO2 adsorbents based on cerium oxide. Journal of CO2 Utilization, 8: 34 – 38.

11.    Wan Isahak, W. N. R., Che Ramli, Z. A., Ismail, M. W., Ismail, K., Yusop, R. M., Mohamed Hisham, M. W. and Yarmo, M. A. (2013). Adsorption–desorption of CO2 on different type of copper oxides surfaces: Physical and chemical attractions studies. Journal of CO2 Utilization, 2: 8 – 15.

12.    Hakim, A., Wan Isahak, W. N. R., Abu Tahari, M. N., Yusop, M. R., Mohamed Hisham, M. W., and Yarmo, M. A. (2014). Temperature programmed desorption of carbon dioxide for activated carbon supported nickel oxide: The adsorption and desorption studies. Advanced Materials Research, 1087: 45 – 49.

13.    Seyller, T., Borgmann, D. and Wedler. G. (1998). Interaction of CO2 with Cs-promoted Fe (110) as compared to Fe (110) /K + CO2. Surface Science, 400: 63 – 79.

14.    Ramis, G., Busca, G. and Lorenzelli. V. (1991). Low-temperature CO2 adsorption on metal oxides: Spectroscopic characterization of some weakly adsorbed species. Materials Chemistry and Physics, 29: 425 – 435.

15.    Ferretto, L. and Glisenti, A. (2002). Study of the surface acidity of an hematite powder. Journal of Molecular Catalysis A: Chemical, 187: 119 – 128.

16.    Lefevre. G. (2004). In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Advance in Colloid and Interface Science, 107: 109 – 123.

17.    Baltrusaitis. J., Schuttlefield, J., Zeitler, E. and Grassian, V. H. (2011). Carbon dioxide adsorption on oxide nanoparticle surfaces. Chemical Engineering Journal, 170:  471 – 481.

18.    Ismail, H. M., Cadenhead D. A. and Zaki, M. I. (1997). Surface reactivity of iron oxide pigmentary powders toward atmospheric components: XPS, FESEM, and gravimetry of CO and CO2 adsorption. Journal of Colloid and Interface Science, 194: 482 – 488.

19.    Dong, W. T., Wu, S. X., Chen, D. P., Jiang, X. W. and Zhu, C. S. (2000). Preparation of α-Fe2O3 nanoparticles by sol-gel process with inorganic iron salt. Chemistry Letters, 496 – 497.

20.    Condon, J. B. (2006). Surface area and porosity determinations by physisorption measurements and theory, 1st ed., Elsevier, UK: pp. 1 – 28.

21.    Hu, Z. H., Srinivasan, M. P. and Ni, Y. M. (2001). Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon, 39: 877 – 886.

22.    Puziy, A. M., Poddubnaya, O. I., Martinez-Alonso, A., Suarez-Garcia, F. and Tascon, J. M. D. (2002). Synthetic carbons activated with phosphoric acid II. Porous structure. Carbon, 40: 1507 – 1519.

23.    Kennedy, L. J., Mohan das, K. and Sekaran, G. (2004). Integrated biological and catalytic oxidation of organics/ inorganics in tannery wastewater by rice husk based mesoporous activated carbon-Bacillus sp. Carbon, 42: 2399 – 2407.

24.    Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. International Union of Pure and Applied Chemistry, 57 (4): 603 – 619.

25.    Gauden, O. A., Terzyk, A. P., Jaroniec, M. and Kowalczyk, P. (2007). Bimodal pore size distributions for carbons: Experimental results and computational studies. Journal of Colloid and Interface Science, 310: 205 – 216.

26.    Choudhary, V. R., Mulla, S. A. R. and Uphade, B. S. (1999). Oxidative coupling of methane over alkaline earth oxides deposited on commercial support pre-coated with rare earth oxides. Fuel, 78: 427 – 437.

27.    Kus, S., Otremba, M., Torz, A. and Taniewski, M. (2002). Further evidence of responsibility of impurities in MgO for variability in its basicity and catalytic performance in oxidative coupling of methane. Fuel, 81: 1755 – 1760.

28.    Di Cosimo, J. I., Diez, V. K., Xu, M., Iglesia, E. and Apesteguia, C. R. (1998). Structure and surface and catalytic properties of Mg-Al basic oxides. Journal of Catalysis, 178: 499 – 510.

29.    Su, C. M. and Suarez, D. L. (1997). In situ infrared speciation of adsorbed carbonate on aluminium and iron oxides. Clays and Clay Mineral, 45(6): 814 – 825.

30.    Rebenstorf, B. (1991). Modified chromium/silica gel catalysts: An FTIR study of the addition of alkali metal ions. Acta Chemica Scandinavica, 45: 1012 – 1017.

31.    Belskaya, O. B., Danilova, I. G., Kazakov, M. O., Mironenko, R. M., Lavrenov, A. V. and Likholobov, V. A. (2012). FTIR spectroscopy of adsorbed probe molecules for analyzing the surface properties of supported Pt (Pd) Catalysts, In T. Theophile (Ed.). Infrared Spectroscopy - Materials Science, Engineering and Technology, In Tech., Croatia: pp. 149 – 178

32.    Chauhan, S. M. and Chakrabarty, B. S. (2014). Lead (Pb) doped fluoride nanocrystals: structural and optical properties. International Journal of Advanced Research, 2 (7): 607 – 614.

33.    Bishop, J. L., Murad, E., Madejova, J., Komadel, P., Wagner, U. and Scheinost, A. C. (1999). Visible, Mossbauer and infrared spectroscopy of dioctahedral smectites: Structural analyses of the Fe-bearing smectites Sampor, SWy-1 and SWa-1: 11th International Clay Conference, Ottawa: pp. 413 – 419.

34.    Taylor, R. M. (1980). Formation and properties of Fe (II) Fe (III) hydroxyl-carbonate and its possible significance in soil formation. Clay Mineral, 15: 369 – 382.

 




Previous                    Content                    Next