Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 82 - 94
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-10
GROWTH
EVALUATION OF MICROALGAE ISOLATED FROM PALM OIL MILL EFFLUENT IN SYNTHETIC
MEDIA
(Penilaian
Pertumbuhan Mikroalga Yang Telah Dipencil Dari Effluen Kilang Minyak Sawit Dalam
Media Sintetik)
Sharifah Najiha
Badar1*, Zahira Yaakob1, Sharifah Najiha Timmiati2
1Department of Chemical and Process Engineering,
Faculty of Engineering and Built Environment
2Fuel Cell Institute
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: najihabadar@gmail.com
Received: 1
June 2016; Accepted: 8 December 2016
Abstract
Discharging waste without removing
harmful compounds can lead to serious environmental and health issues. Despite of
the high content of pollutants, wastewater environment can become an ideal
condition for the growth of several microorganisms. Some species of microalgae have
been found living in palm oil mill effluent (POME), making it suitable to be
used in biological treatment. However, the ability of microalgae to grow and
its composition characteristics in synthetic media are unknown. Therefore, this
study evaluated the growth characteristics and biochemical productivity of Chlorella sorokiniana UKM3, Coelastrella sp. UKM4 and Chlorella sp. UMACC324, which had been previously
isolated from POME. Bold’s Basal Media (BBM) was used as the medium for
cultivation. The experimental works were performed in a lab-scale
photobioreactor at room temperature under continuous illumination for 14 days.
From this study, Coelastrella sp.
UKM4 showed the highest value of growth rates (0.52±0.03 d-1),
biomass productivity (0.07±0.02 g.L-1.d-1), lipid content
(66.42±2.87 mg.L-1, 7.26%) and lipid productivity (452.42 mg.L-1.d-1),
whereas the highest chlorophyll content was observed in Chlorella sorokiniana UKM3 (26.84±1.76 mg.L-1).
Keywords: microalgae, growth, biomass, chlorophyll
content, lipid content
Abstrak
Pembuangan sisa yang tidak dirawat terlebih dahulu boleh menyebabkan isu
yang serius terhadap alam sekitar dan kesihatan. Walaupun kandungan bahan
pencemar adalah tinggi, air sisa boleh menjadi habitat yang ideal bagi
pertumbuhan sesetengah spesis mikroorganisma. Beberapa spesies mikroalga telah
dijumpai hidup dalam effluen kilang minyak sawit (POME). Ini menjadikan spesis
mikroalga tersebut sesuai digunakan dalam proses rawatan sisa secara
biologikal. Walau bagaimanapun, keupayaan mikroalga untuk bertumbuh dan
ciri-ciri komposisinya didalam media sintetik adalah tidak diketahui. Oleh itu,
kajian ini dijalankan untuk menilai ciri-ciri pertumbuhan dan produktiviti
biokimia bagi Chlorella sorokiniana
UKM3, Coelastrella sp. UKM4 dan Chlorella sp. UMACC324, yang sebelum ini
telah dipencil dari POME. Media Bold’s Basal (BBM) telah digunakan sebagai
medium pertumbuhan. Kajian ini telah dilakukan dalam fotobioreaktor
berskala-makmal pada suhu bilik dan dibawah pencahayaan yang berterusan selama
14 hari. Daripada hasil kajian ini, Coelastrella
sp. UKM4 telah menunjukkan nilai yang tertinggi dalam kadar pertumbuhan
(0.52±0.03 hari-1), produktiviti biojisim (0.07±0.02 g.L-1 hari-1),
kandungan lipid (66.42±2.87 mg.L-1, 7.26%) dan produktiviti lipid
(452.42 mg.L-1.hari-1). Kandungan klorofil yang paling
tinggi pula dapat dilihat pada Chlorella
sorokiniana UKM3 (26.84±1.76 mg.L-1).
Kata kunci: mikroalga, pertumbuhan, biojisim, kandungan klorofil, kandungan lipid
References
1.
Hillison,
C. I. (1977). Seaweeds, A color-coded, illustrated guide to common marine
plants of east coast of the United States. Keystone Books. The Pennsylvania
State University Press: pp. 1 – 5.
2.
Garson,
J. (1989). Marine natural products. Natural
Product Reports, 6: 143 – 170.
3.
Hoffmann,
L. (1989). Algae of terrestrial habitats. The
Botanical Review, 55: 77 – 105.
4.
Satpati
G. G., Barman, N., Chakraborty, T. and Pal, R. (2011). Unusual habitat of
algae. Journal of Algal Biomass
Utilization, 2(4): 50 – 52.
5.
Black,
J. G. (2008). Microbiology. Seventh ed. International Student Version. John
Wiley & Sons (Asia) Pte. Ltd.
6.
Campbell,
N. A. and Reece, J. B. (2005). Biology. Seventh Ed. Pearson Education. San
Francisco: Inc. Benjamin Cummings.
7.
Talaro,
K. P. (2009). Foundations in microbiology. Basic Principle, Sixth Ed. New York:
McGraw-Hill: pp. 809.
8.
Barsanti,
L. and Gualtieri, P. (2006). Algae biotechnology. In: Algae: Anatomy,
biochemistry, and biotechnology CRC Press Taylor and Francis Group, Boca Raton:
pp. 324 – 359.
9. Cheng, J., Huang, Y., Feng, J.,
Sun, J., Zhou, J. and Cen, K. (2013). Improving CO2 fixation
efficiency by optimizing Chlorella
PY-ZUI culture conditions in sequential bioreactors. Bioresource Technology, 144: 321 – 327.
10. Anjos, M., Fernandes, B. D.,
Vicente, A. A., Teixeira, J. A. and Dragone, G. (2013). Optimization of CO2
biomitigation by Chlorella vulgaris. Bioresource Technology, 139: 149 – 154.
11. Hakalin, N. L. S., Paz, A. P., Aranda, D. A. G. and Moraes, L. M. P.
(2014). Enhancement of cell growth and lipid content of a freshwater microalgae
Scenedesmus sp. by optimizing
nitrogen, phosphorus and vitamin concentrations for biodiesel production. Natural Sciences, 6: 1044 – 1054.
12. Pulz, O. and Gross, W. (2004).
Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6): 635 – 648.
13. Chisti, Y. (2007). Biodiesel from
microalgae. Biotechnology Advances,
25(3): 294 –
306.
14. Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006).
Commercial applications of microalgae. Journal
of Bioscience and Bioengineering, 101: 87 – 96.
15. Iriani, D., Suriyaphan, O. and Chaiyanate, N. (2011). Effect of iron
concentration on growth, protein content and total phenolic content of Chlorella sp. cultured in basal medium. Sains Malaysiana, 40(4): 353 – 358.
16. Grima, E. M., Fernandez, F. G. A.,
Camacho, F. G. and Chisti, Y. (1999). Photobioreactors: Light regime, mass
transfer and scaleup. Journal of
Biotechnology, 70: 231 – 247.
17. Pulz, O. (2001). Photobioreactors:
Production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57: 287 – 293.
18. Grobbelaar, J. U. (2000).
Physiological and technological considerations for optimising mass algal
cultures. Journal of Applied Physiology,
12: 201 –
206.
19. Oncel, S. S. (2013). Microalgae for
macroenergy world. Renewable and
Sustainable Energy Reviews, 26: 241 – 264.
20.
FAO,
Food & Agriculture Organization of United Nation. (2009). Algae based
biofuels: A review of challenges and opportunities for developing countries:
pp. 1 – 60.
21. Hughes, A. D., Kelly, M. S., Black,
K. D. and Stanley, M. S. (2012). Biogas from macroalgae: Is it time to revisit
the idea? Biotechnology for Biofuels,
5: 1 –
7.
22. Stanley, M. S. and Day, J. G. (2014). Algal bioenergy. In: John Wiley
& Sons, Ltd: Chichester: pp. 1 – 10.
23. Sydney, E. B.,
Strum, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A. and Soccol,
C. R. (2010). Potential carbon dioxide fixation by industrially important
microalgae. Bioresource Technology, 101: 5892 – 5896.
24.
Bilanovic,
D., Andargatchew, A., Kroeger, T. and Shelef, G. (2009). Freshwater and marine
microalgae sequestering of CO2 at different C and N concentrations -
response surface methodology analysis. Energy
Conversion and Management, 50: 262 – 267.
25.
Ding,
G. T., Yaakob, Z., Takriff, M. S., Salihon, J. and Abd Rahaman, M. S. (2016).
Biomass production and nutrient removal by a newly-isolated microalgal strain Chlamydomonas sp. in palm oil mill
effluent (POME). International Journal of
Hydrogen Energy, 41: 4888 – 4895.
26.
Tamil
Selvam, T. B., Renganathan, R. and Takriff, M.S. (2015). Nutrient removal of
POME using POME isolated microalgae strain, Characium
sp. Advanced Materials Research,
1113: 364 – 369.
27.
Basiron,
Y. (2007). Palm oil production through sustainable plantations. European Journal of Lipid Science and
Technology, 109: 289 – 295.
28.
Bhatia,
S., Othman, Z. and Ahmad, A. L. (2007). Pretreatment of palm oil mill effluent
(POME) using Moringa oleifera seeds
as natural coagulant. Journal of
Hazardous Materials, 145 (1-2): 120 – 126.
29. Putri, E. V., Md. Din, M. F.,
Ahmed, Z., Jamaluddin, H. and Chelliapan, S. (2011). Investigation of
microalgae for high lipid content using palm oil mill effluent (POME) as carbon
source. International Conference on
Environment and Industrial Innovation, 12: 85 – 89.
30.
Zainal,
A., Yaakob, Z., Takriff, M. S., Rajkumar, R. and Abdul Ghani, J. (2012).
Phycoremediation in anaerobically digested palm oil mill effluent using
cyanobacterium, Spirulina platensis. Journal of Biobased Materials and Bioenergy,
6: 1– 6.
31.
Bold,
H. C. (1949). The morphology of Chlamydomonas
chlamydogama sp. nov. Bulletin of the
Torrey Botanical Club, 76: 101 –
108.
32.
Bischoff,
H. W. and Bold, H. C. (1963). Phycological studies IV. Some soil algae from
enchanted rock and related algal species. University of Texas, Austin, 6318:
pp. 1 – 95.
33.
Griffiths,
M. J., Garcin, C., Van Hille, R. P. and Harrison, S. T. (2011). Interference by
pigment in the estimation of microalgal biomass concentration by optical
density. Journal of Microbiological
Methods, 85(2): 119 – 123.
34.
Lizzul,
A. M., Hellier, P., Purton, S., Baganz, F., Lamommatos, N. and Campos, L.
(2014). Combined remediation and lipid production using Chlorella Sorokiniana grown on wastewater and exhaust gases. Bioresource Technology, 151: 12 – 18.
35.
Pirt,
S. J. (1975). Principles of microbe and cell cultivation. Blackwell Scientific
Publications, Oxford: pp. 274.
36.
Lee,
J. B. and Kim, B. Y. (2002). Growth characteristics of five microalgal species
isolated from Jeju Island and four Microalgal stock strains in hatchery. Algae, 17(2): 117 – 125.
37.
Rao,
C. S., Sathish, T., Brahamaiah, P., Kumar, T. P. and Prakasham, R. S. (2009).
Development of a Mathematical Model for Bacillus
Circulans Growth and Alkaline Protease Production Kinetics. Journal of Chemical Technology and
Biotechnology, 84: 302 – 307.
38.
Yang,
J. S., Rasa, E., Tantayotai, P., Scow, K. M., Yuan, H. L. and Hristova, K. R.
(2011). Mathematical model of Chlorella
minutissima UTEX2341 growth and lipid production under photoheterotrophic
fermentation conditions. Bioresource
Technology, 102(3): 3077 – 3082.
39.
Ho,
S., Chen, W. and Chang, J. (2010). Scenedesmus
obliquus CNW-Nas a potential candidate for CO2 mitigation and
biodiesel production. Bioresource
Technology, 101: 8725 – 8730.
40.
Chisti,
Y. (2008). Biodiesel from microalgae beats bioethanol. Trends Biotechnology, 26(3): 126 – 131.
41. Richmond, A. (2004). Handbook of Microalgae
Culture, Biotechnology and Applied Phycology, Blackwell Science Ltd.
42.
Folch,
J., Lees, M. and Stanley, G. H. S. (1957). A simple method for the isolation
and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226: 497 – 509.
43.
Frings,
C. S. and Dunn, R. T. (1970). A colorimetric method for determination of total
serum lipid based on the sulfophospho-vanillin reaction. American Journal of Clinical Pathology, 53: 89 – 91
44.
Rocha,
J. M., Garcia, J. E. and Henriques, M. H. (2003). Growth aspects of the marine
microalgae Nannochloropsis gaditana. Biomolecular Engineering, 20:237 – 242.
45.
Borowitzka,
M. A. (1998). Limits to growth in wastewater treatment with algae. Wong Y. S.
and Tam N. F. Y., Editors. Springer Verlag: pp. 203 – 226.
46.
Goldman,
J. C., Azov, Y., Riley, C. B. and Dennett, M. R. (1982). The effect of pH in
intensive cultures. i. biomass regulation.
Journal of Experimental Marine Biology and Ecology, 57: 1 – 13.
47.
Dailey,
M. D. and Reish, D. J. (1993). Ecology of the Southern California bight: A
synthesis and interpretation. University of California Press. Science: pp. 926.
48.
Griffith,
M. J. and Harrison, S. T. L. (2009).
Lipid productivity as a key characteristic of choosing algal species for
biodiesel production. Journal of Applied
Phycology, 21: 493 – 507.
49.
Tamil
Selvam, T. B. (2015). penyingkiran nutrien dari POME dengan menggunakan
mikroalga dan sianobakteria yang dipencil dari POME serta potensi biojisim yang
diperolehi. Tesis Sarjana, Fakulti Kejuruteraan dan Alam Bina. Universiti
Kebangsaan Malaysia.
50.
Vello,
V., Phang, S. M., Chu, W. L., Majid, N. A., Lim, P. E. and Loh, S. K. (2013).
Lipid productivity and fatty acid composition-selection of Chlorella strains isolated from Malaysia for biodiesel production. Journal of Applied Phycology: 26(3),
1399 – 1413.
51.
Lembi,
C. A. and Waaland, J. R. (1988). Algae and Human Affairs. Cambridge University
Press: pp. 590.
52.
Gitelson,
A., Qiuang, H. and Richmond, A. (1996). Photic volume in photoreactors
supporting ultrahigh population densities of the photoautotroph Spirulina Platensis. Applied and Environmental Microbiology,
62: 1570 – 1573.
53.
Vonshak,
A., Abeliovich, A., Boussiba, S. and Richmond, A. (1982). Production of Spirulina biomass: Effect of
environmental factors and population density. Biomass, 2: 175 – 185.
54.
Reichert,
C. C., Reinehr, C. O. and Costa, J. A. V. (2006). Semicontinuous cultivation of
the cyanobacterium Spirulina platensis
in a closed photobioreactor. Brazilian
Journal of Chemical Engineering, 23(1): 23 – 28.
55.
Minhat,
Z., Abd Rahaman, M. S., Takriff, M. S. dan Tan Kofli, N. (2016).
Differentiation of biomass composition between isolated and commercial strains
of microalgae. Journal of Engineering
Science and Technology, 11(5): 737 – 744.
56.
Mata,
T. M., Martins, A. A. and Caetano, N. S. (2010). Microalgae for biodiesel
production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1): 217 – 232.
57.
Khan,
S. A., Rashmi, Husain, M. Z., Prasad, S. and Benerjee, U. C. (2009). Prospects
of biodiesel production from microalgae in India. Renewable and Sustainable Energy Review, 13: 2361 – 2372.
58.
Murphy, D. J. (2005). Plant lipids: Biology, utilisation and manipulation. Oxford,
UK: Blackwell Publishing Ltd.
59.
Kropat, J., Tottey, S., Birkenhirl, R. P., Depege, N.,
Huijser, P. and Merchant, S. (2005). Regulator of nutritional copper signalling
in Chlamydomonas in an SBP domain
protein that recognize the GTAC core of copper response element. Proceedings of the National Academy of
Sciences, 102: 18730 –
18735.
60.
Sarmidi,
A. (2009). Review of biofuel oil and gas production processes from microalgae. Energy Conversion and Management, 50:
1834 – 1840.