Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 82 - 94

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-10

 

 

 

GROWTH EVALUATION OF MICROALGAE ISOLATED FROM PALM OIL MILL EFFLUENT IN SYNTHETIC MEDIA

 

(Penilaian Pertumbuhan Mikroalga Yang Telah Dipencil Dari Effluen Kilang Minyak Sawit Dalam Media Sintetik)

 

Sharifah Najiha Badar1*, Zahira Yaakob1, Sharifah Najiha Timmiati2

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

2Fuel Cell Institute

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: najihabadar@gmail.com

 

 

Received: 1 June 2016; Accepted: 8 December 2016

 

 

Abstract

Discharging waste without removing harmful compounds can lead to serious environmental and health issues. Despite of the high content of pollutants, wastewater environment can become an ideal condition for the growth of several microorganisms. Some species of microalgae have been found living in palm oil mill effluent (POME), making it suitable to be used in biological treatment. However, the ability of microalgae to grow and its composition characteristics in synthetic media are unknown. Therefore, this study evaluated the growth characteristics and biochemical productivity of Chlorella sorokiniana UKM3, Coelastrella sp. UKM4 and Chlorella sp. UMACC324, which had been previously isolated from POME. Bold’s Basal Media (BBM) was used as the medium for cultivation. The experimental works were performed in a lab-scale photobioreactor at room temperature under continuous illumination for 14 days. From this study, Coelastrella sp. UKM4 showed the highest value of growth rates (0.52±0.03 d-1), biomass productivity (0.07±0.02 g.L-1.d-1), lipid content (66.42±2.87 mg.L-1, 7.26%) and lipid productivity (452.42 mg.L-1.d-1), whereas the highest chlorophyll content was observed in Chlorella sorokiniana UKM3 (26.84±1.76 mg.L-1).  

 

Keywords:  microalgae, growth, biomass, chlorophyll content, lipid content

 

Abstrak

Pembuangan sisa yang tidak dirawat terlebih dahulu boleh menyebabkan isu yang serius terhadap alam sekitar dan kesihatan. Walaupun kandungan bahan pencemar adalah tinggi, air sisa boleh menjadi habitat yang ideal bagi pertumbuhan sesetengah spesis mikroorganisma. Beberapa spesies mikroalga telah dijumpai hidup dalam effluen kilang minyak sawit (POME). Ini menjadikan spesis mikroalga tersebut sesuai digunakan dalam proses rawatan sisa secara biologikal. Walau bagaimanapun, keupayaan mikroalga untuk bertumbuh dan ciri-ciri komposisinya didalam media sintetik adalah tidak diketahui. Oleh itu, kajian ini dijalankan untuk menilai ciri-ciri pertumbuhan dan produktiviti biokimia bagi Chlorella sorokiniana UKM3, Coelastrella sp. UKM4 dan Chlorella sp. UMACC324, yang sebelum ini telah dipencil dari POME. Media Bold’s Basal (BBM) telah digunakan sebagai medium pertumbuhan. Kajian ini telah dilakukan dalam fotobioreaktor berskala-makmal pada suhu bilik dan dibawah pencahayaan yang berterusan selama 14 hari. Daripada hasil kajian ini, Coelastrella sp. UKM4 telah menunjukkan nilai yang tertinggi dalam kadar pertumbuhan (0.52±0.03 hari-1), produktiviti biojisim (0.07±0.02 g.L-1 hari-1), kandungan lipid (66.42±2.87 mg.L-1, 7.26%) dan produktiviti lipid (452.42 mg.L-1.hari-1). Kandungan klorofil yang paling tinggi pula dapat dilihat pada Chlorella sorokiniana UKM3 (26.84±1.76 mg.L-1).

 

Kata kunci:  mikroalga, pertumbuhan, biojisim, kandungan klorofil, kandungan lipid

 

References

1.       Hillison, C. I. (1977). Seaweeds, A color-coded, illustrated guide to common marine plants of east coast of the United States. Keystone Books. The Pennsylvania State University Press: pp. 1 – 5.

2.       Garson, J. (1989). Marine natural products. Natural Product Reports, 6: 143 – 170.

3.       Hoffmann, L. (1989). Algae of terrestrial habitats. The Botanical Review, 55: 77 – 105.

4.       Satpati G. G., Barman, N., Chakraborty, T. and Pal, R. (2011). Unusual habitat of algae. Journal of Algal Biomass Utilization, 2(4): 50 – 52.

5.       Black, J. G. (2008). Microbiology. Seventh ed. International Student Version. John Wiley & Sons (Asia) Pte. Ltd.

6.       Campbell, N. A. and Reece, J. B. (2005). Biology. Seventh Ed. Pearson Education. San Francisco: Inc. Benjamin Cummings.

7.       Talaro, K. P. (2009). Foundations in microbiology. Basic Principle, Sixth Ed. New York: McGraw-Hill: pp. 809.

8.       Barsanti, L. and Gualtieri, P. (2006). Algae biotechnology. In: Algae: Anatomy, biochemistry, and biotechnology CRC Press Taylor and Francis Group, Boca Raton: pp. 324 – 359.

9.       Cheng, J., Huang, Y., Feng, J., Sun, J., Zhou, J. and Cen, K. (2013). Improving CO2 fixation efficiency by optimizing Chlorella PY-ZUI culture conditions in sequential bioreactors. Bioresource Technology, 144: 321 327.

10.    Anjos, M., Fernandes, B. D., Vicente, A. A., Teixeira, J. A. and Dragone, G. (2013). Optimization of CO2 biomitigation by Chlorella vulgaris. Bioresource Technology, 139: 149 154.

11.    Hakalin, N. L. S., Paz, A. P., Aranda, D. A. G. and Moraes, L. M. P. (2014). Enhancement of cell growth and lipid content of a freshwater microalgae Scenedesmus sp. by optimizing nitrogen, phosphorus and vitamin concentrations for biodiesel production. Natural Sciences, 6: 1044 1054.

12.    Pulz, O. and Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6): 635 648.

13.    Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3): 294 306.

14.    Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101: 87 96.

15.    Iriani, D., Suriyaphan, O. and Chaiyanate, N. (2011). Effect of iron concentration on growth, protein content and total phenolic content of Chlorella sp. cultured in basal medium. Sains Malaysiana, 40(4): 353 358.

16.    Grima, E. M., Fernandez, F. G. A., Camacho, F. G. and Chisti, Y. (1999). Photobioreactors: Light regime, mass transfer and scaleup. Journal of Biotechnology, 70: 231 247.

17.    Pulz, O. (2001). Photobioreactors: Production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57: 287 293.

18.    Grobbelaar, J. U. (2000). Physiological and technological considerations for optimising mass algal cultures. Journal of Applied Physiology, 12: 201 206.

19.    Oncel, S. S. (2013). Microalgae for macroenergy world. Renewable and Sustainable Energy Reviews, 26: 241 264.

20.    FAO, Food & Agriculture Organization of United Nation. (2009). Algae based biofuels: A review of challenges and opportunities for developing countries: pp. 1 – 60.

21.    Hughes, A. D., Kelly, M. S., Black, K. D. and Stanley, M. S. (2012). Biogas from macroalgae: Is it time to revisit the idea? Biotechnology for Biofuels, 5: 1 7.

22.    Stanley, M. S. and Day, J. G. (2014). Algal bioenergy. In: John Wiley & Sons, Ltd: Chichester: pp. 1 10.

23.    Sydney, E. B., Strum, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A. and Soccol, C. R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101: 5892 5896.

24.    Bilanovic, D., Andargatchew, A., Kroeger, T. and Shelef, G. (2009). Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations - response surface methodology analysis. Energy Conversion and Management, 50: 262 – 267.

25.    Ding, G. T., Yaakob, Z., Takriff, M. S., Salihon, J. and Abd Rahaman, M. S. (2016). Biomass production and nutrient removal by a newly-isolated microalgal strain Chlamydomonas sp. in palm oil mill effluent (POME). International Journal of Hydrogen Energy, 41: 4888 – 4895.

26.    Tamil Selvam, T. B., Renganathan, R. and Takriff, M.S. (2015). Nutrient removal of POME using POME isolated microalgae strain, Characium sp. Advanced Materials Research, 1113: 364 – 369.

27.    Basiron, Y. (2007). Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology, 109: 289 – 295.

28.    Bhatia, S., Othman, Z. and Ahmad, A. L. (2007). Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant. Journal of Hazardous Materials, 145 (1-2): 120 – 126.

29.    Putri, E. V., Md. Din, M. F., Ahmed, Z., Jamaluddin, H. and Chelliapan, S. (2011). Investigation of microalgae for high lipid content using palm oil mill effluent (POME) as carbon source. International Conference on Environment and Industrial Innovation, 12: 85 89.

30.    Zainal, A., Yaakob, Z., Takriff, M. S., Rajkumar, R. and Abdul Ghani, J. (2012). Phycoremediation in anaerobically digested palm oil mill effluent using cyanobacterium, Spirulina platensis. Journal of Biobased Materials and Bioenergy, 6: 1– 6.

31.    Bold, H. C. (1949). The morphology of Chlamydomonas chlamydogama sp. nov. Bulletin of the Torrey Botanical Club, 76: 101 – 108.

32.    Bischoff, H. W. and Bold, H. C. (1963). Phycological studies IV. Some soil algae from enchanted rock and related algal species. University of Texas, Austin, 6318: pp. 1 – 95.

33.    Griffiths, M. J., Garcin, C., Van Hille, R. P. and Harrison, S. T. (2011). Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods, 85(2): 119 – 123.

34.    Lizzul, A. M., Hellier, P., Purton, S., Baganz, F., Lamommatos, N. and Campos, L. (2014). Combined remediation and lipid production using Chlorella Sorokiniana grown on wastewater and exhaust gases. Bioresource Technology, 151: 12 – 18.

35.    Pirt, S. J. (1975). Principles of microbe and cell cultivation. Blackwell Scientific Publications, Oxford: pp. 274.

36.    Lee, J. B. and Kim, B. Y. (2002). Growth characteristics of five microalgal species isolated from Jeju Island and four Microalgal stock strains in hatchery. Algae, 17(2): 117 – 125.

37.    Rao, C. S., Sathish, T., Brahamaiah, P., Kumar, T. P. and Prakasham, R. S. (2009). Development of a Mathematical Model for Bacillus Circulans Growth and Alkaline Protease Production Kinetics. Journal of Chemical Technology and Biotechnology, 84: 302 – 307.

38.    Yang, J. S., Rasa, E., Tantayotai, P., Scow, K. M., Yuan, H. L. and Hristova, K. R. (2011). Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresource Technology, 102(3): 3077 – 3082.

39.    Ho, S., Chen, W. and Chang, J. (2010). Scenedesmus obliquus CNW-Nas a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology, 101: 8725 – 8730.

40.    Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends Biotechnology, 26(3): 126 – 131.

41.    Richmond, A. (2004). Handbook of Microalgae Culture, Biotechnology and Applied Phycology, Blackwell Science Ltd.

42.    Folch, J., Lees, M. and Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226: 497 – 509.

43.    Frings, C. S. and Dunn, R. T. (1970). A colorimetric method for determination of total serum lipid based on the sulfophospho-vanillin reaction. American Journal of Clinical Pathology, 53: 89 – 91

44.    Rocha, J. M., Garcia, J. E. and Henriques, M. H. (2003). Growth aspects of the marine microalgae Nannochloropsis gaditana. Biomolecular Engineering, 20:237 – 242.

45.    Borowitzka, M. A. (1998). Limits to growth in wastewater treatment with algae. Wong Y. S. and Tam N. F. Y., Editors. Springer Verlag: pp. 203 – 226.

46.    Goldman, J. C., Azov, Y., Riley, C. B. and Dennett, M. R. (1982). The effect of pH in intensive cultures. i. biomass regulation. Journal of Experimental Marine Biology and Ecology, 57: 1 – 13.               

47.    Dailey, M. D. and Reish, D. J. (1993). Ecology of the Southern California bight: A synthesis and interpretation. University of California Press. Science: pp. 926.

48.    Griffith, M. J. and Harrison, S. T. L. (2009).  Lipid productivity as a key characteristic of choosing algal species for biodiesel production. Journal of Applied Phycology, 21: 493 – 507.

49.    Tamil Selvam, T. B. (2015). penyingkiran nutrien dari POME dengan menggunakan mikroalga dan sianobakteria yang dipencil dari POME serta potensi biojisim yang diperolehi. Tesis Sarjana, Fakulti Kejuruteraan dan Alam Bina. Universiti Kebangsaan Malaysia.

50.    Vello, V., Phang, S. M., Chu, W. L., Majid, N. A., Lim, P. E. and Loh, S. K. (2013). Lipid productivity and fatty acid composition-selection of Chlorella strains isolated from Malaysia for biodiesel production. Journal of Applied Phycology: 26(3), 1399 – 1413.

51.    Lembi, C. A. and Waaland, J. R. (1988). Algae and Human Affairs. Cambridge University Press: pp. 590.

52.    Gitelson, A., Qiuang, H. and Richmond, A. (1996). Photic volume in photoreactors supporting ultrahigh population densities of the photoautotroph Spirulina Platensis. Applied and Environmental Microbiology, 62: 1570 – 1573.

53.    Vonshak, A., Abeliovich, A., Boussiba, S. and Richmond, A. (1982). Production of Spirulina biomass: Effect of environmental factors and population density. Biomass, 2: 175 – 185.

54.    Reichert, C. C., Reinehr, C. O. and Costa, J. A. V. (2006). Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor. Brazilian Journal of Chemical Engineering, 23(1): 23 – 28.

55.    Minhat, Z., Abd Rahaman, M. S., Takriff, M. S. dan Tan Kofli, N. (2016). Differentiation of biomass composition between isolated and commercial strains of microalgae. Journal of Engineering Science and Technology, 11(5): 737 – 744.

56.    Mata, T. M., Martins, A. A. and Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1): 217 – 232.

57.    Khan, S. A., Rashmi, Husain, M. Z., Prasad, S. and Benerjee, U. C. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Review, 13: 2361 – 2372.

58.    Murphy, D. J. (2005). Plant lipids: Biology, utilisation and manipulation. Oxford, UK: Blackwell Publishing Ltd.

59.    Kropat, J., Tottey, S., Birkenhirl, R. P., Depege, N., Huijser, P. and Merchant, S. (2005). Regulator of nutritional copper signalling in Chlamydomonas in an SBP domain protein that recognize the GTAC core of copper response element. Proceedings of the National Academy of Sciences, 102: 18730 18735.

60.    Sarmidi, A. (2009). Review of biofuel oil and gas production processes from microalgae. Energy Conversion and Management, 50: 1834 – 1840.

 




Previous                    Content                    Next