Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 159 - 165
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-18
CHARACTERIZATION
OF ACTIVATED CARBON USING CHEMICAL ACTIVATION VIA MICROWAVE ULTRASONIC SYSTEM
(Pencirian
Karbon Teraktif Menggunakan Sistem Pengaktifan Kimia Melalui Ketuhar Gelombang
Ultrasonik)
Norakmalah Mohd Zawawi1, Fazlena Hamzah1*, Mahanim
Sarif2, Shareena Fairuz Abdul Manaf1, Ani Idris3
1Biocatalysis & Biobased Material Research Group,
Green Technology and Sustainable Development Research Community, Faculty of
Chemical Engineering,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Wood Chemistry and Protection Program, Forest
Product Division,
Forest
Research Institute Malaysia (FRIM),52109 Kepong, Malaysia
3Faculty of Chemical Engineering,
Universiti
Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
*Corresponding author: fazlena@salam.uitm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Higher adsorption capacities of
activated carbon (AC) can be evaluate according to pore volume, porosity and
surface area. AC with higher pore volume, porosity and surface area desired in
the present study in order to enhance the properties of AC supercapacitor.
Thus, the present studies focus on the chemical activation process to increase
the characterization of AC. The study was using bamboo waste as a precursor and
the activation process was conducted using microwave ultrasonic system. The
chemical agent used during the process was KOH and H2SO4.
Microwave activation was conducted at intensity 100 W and 300 W for 30 min and
sonication frequency was constantly set at 200 Hz for 60 min. The sample was
carbonized at temperature of 400 ºC and 800 ºC using furnace for 2 hours. Then,
AC was characterized for surface area using BET analysis and functioning group
using FTIR analysis. The results shown the carboxyl, aliphatic, aromatic and
phenolic hydroxyl group are present on raw bamboo while new functional group
such as alkyl halide and some of some weak bands appeared which analogous with
out of plane bending mode of the C-H or O-H group occur for AC. Active surface
area and total pore volume of AC supercapacitor in 5M of concentration for H2SO4
and KOH corresponded to 1167 m2/g, 0.724 cm3/g, 740.10 m2/g,
0.462 cm3/g, respectively.
Keywords: supercapacitor, microwave-ultrasonic,
activation, chemical, carbonization
Abstrak
Kapasiti
penjerapan yang tinggi pada karbon teraktif boleh dinilai mengikut isipadu
liang, keliangan dan luas permukaan. Keaktifan karbon dengan isi padu liang
yang tinggi, tahap keliangan yang besar dan luas permukaan yang tinggi amat
dikehendaki di dalam kajian ini bagi meningkatkan sifat-sifat keaktifan karbon
superkapasitor. Oleh itu, kajian ini memberi tumpuan kepada proses pengaktifan
kimia untuk meningkatkan pencirian yang diperlukan dalam karbon aktif. Kajian
ini telah menggunakan sisa buluh sebagai pelopor dan proses pengaktifan telah
dijalankan menggunakan sistem ultrasonik-gelombang mikro. Agen kimia yang
digunakan semasa proses pengaktifan adalah KOH dan H2SO4.
Pengaktifan gelombang ketuhar telah digunakan pada intensiti 100 W dan 300 W
selama 30 min dan kekerapan sonikasi telah ditetapkan pada 200 Hz selama 60
min. Sampel telah dikarbonisasi pada suhu 400 ºC dan 800 ºC mengunakan relau
selama 2 jam. Kemudian, karbon aktif dikelaskan bagi mendapatkan luas permukaan
dengan menggunakan analisis BET dan kumpulan berfungsi pula menggunakan analisis
FTIR. Keputusan menunjukkan karboksil aliphatik, aromatik dan kumpulan fenolik
hidrosil hadir pada bahan asas buluh manakala kumpulan berfungsi baharu seperti
alkil halida dan beberapa kumpulan yang lemah muncul dimana serupa dengan
lenturan mod bagi C-H atau O-H yang terhasil pada karbon aktif. Kawasan
permukaan yang aktif dan jumlah isipadu liang karbon aktif superkasitor pada
kepekatan 5M untuk H2SO4 and KOH sepadan mengikut aturan
1167 m2/g, 0.724 cm3/g, 740.10 m2/g, 0.462 cm3/g.
Kata kunci: superkapasitor, gelombang mikro-ultrasonik, pengaktifan, bahan kimia,
karbonisasi
References
1.
Chen,
D., Zhou, J. and Zhang, Q. (2014). Effects of heating rate on slow pyrolysis
behavior, kinetic parameters and products properties of moso bamboo. Bioresource
Technology, 169 (9): 313 – 319.
2.
Liu,
Q.-S., Zheng, T., Wang, P. and Guo, L. (2010). Preparation and characterization
of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial Crops and Products,
31(2): 233 – 238.
3.
Wang,
R., Amano, Y. and Machida, M. (2013). Surface properties and water vapor
adsorption–desorption characteristics of bamboo-based activated carbon. Journal
of Analytical and Applied Pyrolysis, 104: 667 – 674.
4.
Lee,
Y. J., Kim, G.-P., Bang, Y., Yi, J., Seo, J. G. and Song, I. K. (2014).
Activated carbon aerogel containing graphene as electrode material for
supercapacitor. Materials Research Bulletin, 50: 240 –245.
5.
Iqbaldin,
M. N. M., Khudzir, I., Azlan, M. I. M., Zaidi, A. G., Surani, B. and Zubri, Z.
(2013). Properties of Coconut Shell Activated Carbon. Journal of Tropical
Forest Science, 25 (4): 497 – 503.
6.
Dabrowski,
A., Podkościelny, P., Hubicki, Z. and Barczak, M. (2005). Adsorption of
phenolic compounds by activated carbon- a critical review. Chemosphere,
58 (8) :1049 – 1070.
7.
Gonzalez,
P. G. and Pliego-Cuervo, Y. B. (2013). Physicochemical and microtextural
characterization of activated carbons produced from water steam activation of
three bamboo species. Journal of Analytical and Applied Pyrolysis, 99:
32 – 39.
8.
Foo,
K.Y. and Hameed, B. H. (2012) Adsorption characteristics of industrial solid
waste derived activated carbon prepared by microwave heating for methylene
blue. Fuel Processing Technology, 99 –103.
9.
Foo,
K. Y. and Hameed, B. H. (2012). Coconut husk derived activated carbon via
microwave induced activation: effects of activation agents, preparation
parameters, and adsorption performance. Chemical Engineering Journal, 184:
57 – 65.
10.
Foo,
K. Y. and Hameed, B. H. (2012). Porous structure and adsorptive properties of
pineapple based activated carbons prepared via microwave assisted KOH and K2CO3
activation. Microporous and Mesoporous Materials, 148: 191 – 195.
11.
Ahmed,
M. J. and Theydan, S. K. (2013). Microporous activated carbon from Siris seed
pods by microwave-induced KOH activation for metronidazole adsorption. Journal
of Analytical and Applied Pyrolysis, 99: 101 – 109.
12.
Koplan,
S., Okun, D. T., Hillman, J. A., Lane, C. R., Pearson, D. R. and Aranoff, S. L.
(2006). Certain activated carbon from China. U.S International Trade
Commission. Washington.
13.
Ma,
X., Yang, H., Yu, L., Chen, Y. and Li, Y. (2014). Preparation, surface and pore
structure of high surface area activated carbon fibers from bamboo by steam
activation. Materials, 7(6): 4431 – 4441.
14.
Paiva,
M. C. R., Bernardo, C. A. and Nardin, M. (2000). Mechanical, surface and
interfacial characteristic of pitch and PAN-carbon fibres. Carbon, 38: 1323
– 1327.
15.
Wang,
T. H., Tan, S. X. and Liang, C. H. (2009). Preparation and characterization of
activated carbon from wood via microwave-induced ZnCl2 activation. Carbon,
47: 1880 – 1883.
16.
Deng,
H., Li, G., Yang, H., Tang, J. and Tang, J. (2010). Preparation of activated
carbons from cotton stalk by microwave assisted KOH and K2CO3
activation. Chemical Engineering Journal, 163 (3): 373 – 381.
17.
Ahmad,
A. A. and Hameed, B. H. (2009). Reduction of COD and color of dyeing effluent
from a cotton textile mill by adsorption onto bamboo-based activated carbon. Journal
of Hazardous Materials, 172 (2-3): 1538 – 1543.
18.
Ahmad,
M. A., Ahmad Puad, N. A. and Bello, O. S. (2014). Kinetic, equilibrium and
thermodynamic studies of synthetic dye removal using pomegranate peel activated
carbon prepared by microwave-induced KOH activation. Water Resources and
Industry, 6: 18 – 35.
19.
Nazri,
I., Ahmad, Z. A., Ahmad, M. A., Ahmad, N. and Sulaiman, S. K. (2010). Optimization
of process variables for malachite green dye removal using rubber seed coat
based activated carbon. International Journal of Engineering and Technology,
11: 305 – 311.
20.
Sun,
Y. and Webley, P. A. (2010). Preparation of activated carbons from corncob with
large specific surface area by a variety of chemical activators and their
application in gas storage. Chemical Engineering Journal, 162: 883 – 892.