Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 204 - 212

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-24

 

 

 

PREDICTION OF INDUSTRIAL CATALYSTS DEACTIVATION RATE USING FIRST PRINCIPLE MODEL AND OPERATING DATA

 

(Ramalan Kadar Penyahaktifan Mangkin Industri Menggunakan Model Prinsip Pertama dan Data Operasi)

 

Abbas Azarpour1* and Sharifah Rafidah Wan Alwi2

 

1Chemical Engineering Department,

University Teknologi Petronas, 32610 Bandar Seri Iskandar, Perak, Malaysia

2Process Systems Engineering Center (PROSPECT),

 Research Institute for Sustainable Environment, Faculty of Chemical Engineering,

Universiti Teknologi Malaysia, 81310 UTM Sekudai, Johor, Malaysia

 

*Corresponding author: abbas.azarpour@utp.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Catalyst deactivation is the loss of catalytic activity and /or selectivity over the course of time. Catalyst deactivation is a considerable and enduring problem in the operation of industrial catalytic processes. It is very costly in terms of catalyst replacement and process shutdown.  The deactivation phenomenon not only affects the final product quality but also negatively influences the efficiency of the downstream processes. Therefore, a practical method which can accurately predict the deactivation rate can be a quite advantage to the industrial processes. In this paper, the deactivation rate of the industrial catalyst is predicted using operating data and catalyst specifications. The first principle model (FPM) is employed to predict the catalysts deactivation rate. The devised model is implemented into an industrial catalyst, which is palladium supported on carbon (Pd/C) utilized for the purification process of terephthalic acid, to show its applicability. The whole programs to obtain the rate of catalyst deactivation have been coded into Matlab R2013a environment. The model validated against industrial data. For the proposed catalyst, the catalyst sintering order is calculated with less that 3 percent error, and the pre-exponential values and the activation energy for the deactivation were calculated 0.00092 h-1 and 5279 J mol-1. Moreover, the catalyst is deactivated after around 360 days of operation. The methods, which are devised in this study, can be applied to any industrial catalyst to calculate the rate of deactivation.

 

Keywords:  catalyst, deactivation rate, first principle model, sintering

 

Abstrak

Penyahaktifan mangkin adalah kehilangan aktiviti mangkin dan / atau kepilihan mangkin yang berkadaran dengan masa. Penyahaktifan mangkin adalah masalah besar yang sering berlaku dalam proses pemangkinan di industri. Ini kerana penggantian mangkin memakan kos yang tinggi dan boleh menyebabkan penutupan proses. Fenomena penyahaktifan tidak hanya memberi kesan kepada kualiti akhir produk tetapi juga mempengaruhi kecekapan proses hiliran. Oleh itu, satu kaedah praktikal yang mampu meramal dengan tepat kadar penyahaktifan boleh menjadi satu kelebihan untuk proses industri. Dalam penyelidikan ini, kadar penyahaktifan pemangkin industri diramalkan menggunakan operasi data dan spesifikasi mangkin. Model prinsip pertama (FPM) digunakan untuk meramalkan kadar penyahaktifan mangkin itu. Model yang dihasilkan ini digunakan sebagai mangkin di industri, iaitu palladium disokong pada karbon (Pd/C) digunakan untuk proses penulenan asid tereftalik, untuk membuktikan keterterapannya. Keseluruhan pengaturcaraan untuk mendapatkan kadar penyahaktifan mangkin telah dikodkan ke dalam perisian Matlab R2013a. Model ini telah disahkan terhadap data industri. Bagi mangkin yang dicadangkan, urutan pensinteran mangkin dikira dengan ralat kurang daripada 3 peratus, dan nilai pra-eksponen serta tenaga pengaktifan untuk penyahaktifan yang dikira adalan 0.00092 h-1 and 5279 J mol-1. Selain itu, mangkin telah dinyahaktif selepas sekitar 360 hari operasi. Kaedah-kaedah yang direka dalam kajian ini boleh diaplikasikan untuk segala jenis mangkin industri bagi mengira kadar penyahaktifan.

 

Kata kunci:  mangkin, kadar penyahaktifan, prinsip model pertama, pensinteran

 

References

1.       Argyle, M. D. and Bartholomew, C. H. (2015). Heterogeneous catalyst deactivation and regeneration: A review. Catalysts, 5: 145 - 269.

2.       Moulijn, J. A., Van Diepen, A. and Kapteijn, F. (2001). Catalyst deactivation: Is it predictable?: What to do? Applied Catalysis A: General, 212: 3 - 16.

3.       Markos, J., Brunovska, A. and Ilavsky, J. (1987). Modelling of catalytic reactors with catalyst deactivation: Iv. Parameter estimation of the rate equations of heterogeneous catalyst deactivation. Chemical Papers, 41: 375.

4.       Roininen, J. and Alopaeus, V. (2008). Modeling of catalyst activity profiles in fixed-bed reactors with a moment transformation method. Industrial & Engineering Chemistry Research, 47: 8192 - 8196.

5.       Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General, 212: 17 - 60.

6.       Chang, J.-S. and Hung, B.-C. (2002). Optimization of batch polymerization reactors using neural-network rate-function models. Industrial & Engineering Chemistry Research, 41: 2716 - 2727.

7.       Zahedi, G., Elkamel, A., Lohi, A., Jahanmiri, A. and Rahimpor, M. (2005). Hybrid artificial neural network—first principle model formulation for the unsteady state simulation and analysis of a packed bed reactor for CO2 hydrogenation to methanol. Chemical Engineering Journal, 115: 113 - 120.

8.       Bartholomew, C. H. (1994). Sintering kinetics of supported metals: perspectives from a generalized power law approach. Studies in Surface Science and Catalysis, 88: 1 - 18.

9.       Pellegrini, R., Agostini, G., Groppo, E., Piovano, A., Leofanti, G. and Lamberti, C. (2011). 0.5 Wt.% Pd/C catalyst for purification of terephthalic acid: irreversible deactivation in industrial plants. Journal of Catalysis, 280: 150 - 160.

10.    Li, H., Zhao, Y., Gao, C., Wang, Y., Sun, Z. and Liang, X. (2012). Study on seactivation of Ni/Al2O3 Catalyst for liquid phase hydrogenation of crude 1, 4-butanediol aqueous solution. Chemical Engineering Journal, 181: 501 - 507.

11.    Salmi, T., Murzin, D.Y., Wärnå, J., Mäki-Arvela, P. and Martin, G. (2013). Integrated modelling of reaction and catalyst deactivation kinetics—hydrogenation of sitosterol to sitostanol over a palladium catalyst. Chemical Engineering Science, 104: 156 - 165.

12.    Sørensen, M. D. P. (2014). Deactivation models by fitting the progression of temperature profiles–coking model for the MTG process in adiabatic reactors. Chemical Engineering Science, 106: 126 - 135.

13.    Keyvanloo, K., Fisher, M. J., Hecker, W. C., Lancee, R. J., Jacobs, G. and Bartholomew, C.H. (2015). Kinetics of deactivation by carbon of a cobalt fischer–tropsch catalyst: Effects of CO and H2 partial pressures. Journal of Catalysis, 327: 33 - 47.

14.    Partenheimer, W. (1995). Methodology and scope of metal/bromide autoxidation of hydrocarbons. Catalysis Today, 23: 69 - 158.

15.    Pernicone, N., Cerboni, M., Prelazzi, G., Pinna, F. and Fagherazzi, G. (1998). An investigation on Pd/C industrial catalysts for the purification of terephthalic acid. Catalysis Today, 44: 129 - 135.

16.    STPC (2010). Operating manual of Pta/Pet production plant. (Shahid Tondgooyan Petrochemical Company (Iran)).

17.    Zhou, J.-H., Shen, G.-Z., Zhu, J. and Yuan, W.-K. (2006). Terephthalic acid hydropurification over Pd/C catalyst. Studies in Surface Science and Catalysis: 293 - 296.

18.    Azarpour, A., Alwi, S. R. W., Zahedi, G., Madooli, M. and Millar, G. J. (2015). Catalytic activity evaluation of industrial Pd/C catalyst via gray-box dynamic modeling and simulation of hydropurification reactor. Applied Catalysis A: General, 489: 262 - 271.

19.    Azarpour, A., Nejad G. B. T., Wan Alwi, S.R., Abdul Manan, Z. and Madooli Behbehani, M. (2015). Prediction of Pd/C catalyst deactivation rate and assessment of optimal operating conditions of industrial hydropurification process. Industrial & Engineering Chemistry Research, 54: 7067 - 7082.

20.    Azarpour, A. and Zahedi, G. (2012). Performance analysis of crude terephthalic acid hydropurification in an industrial trickle-bed reactor experiencing catalyst deactivation. Chemical Engineering Journal, 209: 180 - 194.

 




Previous                    Content                    Next