Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 204 - 212
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-24
PREDICTION
OF INDUSTRIAL CATALYSTS DEACTIVATION RATE USING FIRST PRINCIPLE MODEL AND
OPERATING DATA
(Ramalan Kadar
Penyahaktifan Mangkin Industri Menggunakan Model Prinsip Pertama dan Data
Operasi)
Abbas Azarpour1* and Sharifah Rafidah Wan Alwi2
1Chemical
Engineering Department,
University Teknologi Petronas,
32610 Bandar Seri Iskandar, Perak, Malaysia
2Process
Systems Engineering Center (PROSPECT),
Research Institute for Sustainable
Environment, Faculty of Chemical Engineering,
Universiti Teknologi Malaysia,
81310 UTM Sekudai, Johor, Malaysia
*Corresponding author: abbas.azarpour@utp.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Catalyst
deactivation is the loss of catalytic activity and /or selectivity over the
course of time. Catalyst deactivation is a considerable and enduring problem in
the operation of industrial catalytic processes. It is very costly in terms of
catalyst replacement and process shutdown.
The deactivation phenomenon not only affects the final product quality
but also negatively influences the efficiency of the downstream processes.
Therefore, a practical method which can accurately predict the deactivation
rate can be a quite advantage to the industrial processes. In this paper, the
deactivation rate of the industrial catalyst is predicted using operating data
and catalyst specifications. The first principle model (FPM) is employed to
predict the catalysts deactivation rate. The devised model is implemented into
an industrial catalyst, which is palladium supported on carbon (Pd/C) utilized
for the purification process of terephthalic acid, to show its applicability.
The whole programs to obtain the rate of catalyst deactivation have been coded
into Matlab R2013a environment. The model validated against industrial data.
For the proposed catalyst, the catalyst sintering order is calculated with less
that 3 percent error, and the pre-exponential values and the activation energy
for the deactivation were calculated 0.00092 h-1 and 5279 J mol-1.
Moreover, the catalyst is deactivated after around 360 days of operation. The
methods, which are devised in this study, can be applied to any industrial
catalyst to calculate the rate of deactivation.
Keywords: catalyst,
deactivation rate, first principle model, sintering
Abstrak
Penyahaktifan mangkin adalah kehilangan aktiviti mangkin dan
/ atau kepilihan mangkin yang berkadaran dengan masa. Penyahaktifan mangkin adalah
masalah besar yang sering berlaku dalam proses pemangkinan di industri. Ini
kerana penggantian mangkin memakan kos yang tinggi dan boleh menyebabkan
penutupan proses. Fenomena penyahaktifan tidak hanya memberi kesan kepada
kualiti akhir produk tetapi juga mempengaruhi kecekapan proses hiliran. Oleh
itu, satu kaedah praktikal yang mampu meramal dengan tepat kadar penyahaktifan
boleh menjadi satu kelebihan untuk proses industri. Dalam penyelidikan ini,
kadar penyahaktifan pemangkin industri diramalkan menggunakan operasi data dan
spesifikasi mangkin. Model prinsip pertama (FPM) digunakan untuk meramalkan
kadar penyahaktifan mangkin itu. Model yang dihasilkan ini digunakan sebagai
mangkin di industri, iaitu palladium disokong pada karbon (Pd/C) digunakan untuk
proses penulenan asid tereftalik, untuk membuktikan keterterapannya.
Keseluruhan pengaturcaraan untuk mendapatkan kadar penyahaktifan mangkin telah
dikodkan ke dalam perisian Matlab R2013a. Model ini telah disahkan terhadap
data industri. Bagi mangkin yang dicadangkan, urutan pensinteran mangkin dikira
dengan ralat kurang daripada 3 peratus, dan nilai pra-eksponen serta tenaga
pengaktifan untuk penyahaktifan yang dikira adalan 0.00092 h-1 and
5279 J mol-1. Selain itu, mangkin telah dinyahaktif selepas sekitar
360 hari operasi. Kaedah-kaedah yang direka dalam kajian ini boleh
diaplikasikan untuk segala jenis mangkin industri bagi mengira kadar
penyahaktifan.
Kata kunci: mangkin, kadar penyahaktifan, prinsip model pertama,
pensinteran
References
1.
Argyle, M. D. and Bartholomew,
C. H. (2015). Heterogeneous catalyst deactivation and regeneration: A review. Catalysts, 5: 145 - 269.
2. Moulijn,
J. A., Van Diepen, A. and Kapteijn, F. (2001). Catalyst deactivation: Is it
predictable?: What to do? Applied
Catalysis A: General, 212: 3 - 16.
3. Markos,
J., Brunovska, A. and Ilavsky, J. (1987). Modelling of catalytic reactors with
catalyst deactivation: Iv. Parameter estimation of the rate equations of
heterogeneous catalyst deactivation. Chemical
Papers, 41: 375.
4. Roininen,
J. and Alopaeus, V. (2008). Modeling of catalyst activity profiles in fixed-bed
reactors with a moment transformation method. Industrial & Engineering Chemistry Research, 47: 8192 - 8196.
5. Bartholomew,
C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General, 212: 17 - 60.
6. Chang,
J.-S. and Hung, B.-C. (2002). Optimization of batch polymerization reactors
using neural-network rate-function models. Industrial
& Engineering Chemistry Research, 41: 2716 - 2727.
7. Zahedi,
G., Elkamel, A., Lohi, A., Jahanmiri, A. and Rahimpor, M. (2005). Hybrid artificial
neural network—first principle model formulation for the unsteady state
simulation and analysis of a packed bed reactor for CO2
hydrogenation to methanol. Chemical
Engineering Journal, 115: 113 - 120.
8. Bartholomew,
C. H. (1994). Sintering kinetics of supported metals: perspectives from a
generalized power law approach. Studies
in Surface Science and Catalysis, 88: 1 - 18.
9. Pellegrini,
R., Agostini, G., Groppo, E., Piovano, A., Leofanti, G. and Lamberti, C.
(2011). 0.5 Wt.% Pd/C catalyst for purification of terephthalic acid:
irreversible deactivation in industrial plants. Journal of Catalysis, 280: 150 - 160.
10. Li,
H., Zhao, Y., Gao, C., Wang, Y., Sun, Z. and Liang, X. (2012). Study on
seactivation of Ni/Al2O3 Catalyst for liquid phase
hydrogenation of crude 1, 4-butanediol aqueous solution. Chemical Engineering Journal, 181: 501 - 507.
11. Salmi,
T., Murzin, D.Y., Wärnå, J., Mäki-Arvela, P. and Martin, G. (2013). Integrated modelling
of reaction and catalyst deactivation kinetics—hydrogenation of sitosterol to
sitostanol over a palladium catalyst. Chemical
Engineering Science, 104: 156 - 165.
12. Sørensen,
M. D. P. (2014). Deactivation models by fitting the progression of temperature
profiles–coking model for the MTG process in adiabatic reactors. Chemical Engineering Science, 106: 126 -
135.
13. Keyvanloo,
K., Fisher, M. J., Hecker, W. C., Lancee, R. J., Jacobs, G. and Bartholomew,
C.H. (2015). Kinetics of deactivation by carbon of a cobalt fischer–tropsch
catalyst: Effects of CO and H2 partial pressures. Journal of Catalysis, 327: 33 - 47.
14. Partenheimer,
W. (1995). Methodology and scope of metal/bromide autoxidation of hydrocarbons.
Catalysis Today, 23: 69 - 158.
15. Pernicone,
N., Cerboni, M., Prelazzi, G., Pinna, F. and Fagherazzi, G. (1998). An investigation
on Pd/C industrial catalysts for the purification of terephthalic acid. Catalysis Today, 44: 129 - 135.
16. STPC
(2010). Operating manual of Pta/Pet production plant. (Shahid Tondgooyan
Petrochemical Company (Iran)).
17. Zhou,
J.-H., Shen, G.-Z., Zhu, J. and Yuan, W.-K. (2006). Terephthalic acid
hydropurification over Pd/C catalyst. Studies
in Surface Science and Catalysis: 293 - 296.
18. Azarpour,
A., Alwi, S. R. W., Zahedi, G., Madooli, M. and Millar, G. J. (2015). Catalytic
activity evaluation of industrial Pd/C catalyst via gray-box dynamic modeling
and simulation of hydropurification reactor. Applied Catalysis A: General, 489: 262 - 271.
19. Azarpour,
A., Nejad G. B. T., Wan Alwi, S.R., Abdul Manan, Z. and Madooli Behbehani, M.
(2015). Prediction of Pd/C catalyst deactivation rate and assessment of optimal
operating conditions of industrial hydropurification process. Industrial & Engineering Chemistry
Research, 54: 7067 - 7082.
20. Azarpour,
A. and Zahedi, G. (2012). Performance analysis of crude terephthalic acid
hydropurification in an industrial trickle-bed reactor experiencing catalyst
deactivation. Chemical Engineering
Journal, 209: 180 - 194.