Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 267 - 282

DOI: https://doi.org/10.17576/mjas-2017-2102-01

 

 

 

A REVIEW OF EXPLOSIVE RESIDUE DETECTION FROM FORENSIC CHEMISTRY PERSPECTIVE

 

(Satu Ulasan Pengesanan Residu Letupan dari Sudut Pandangan Kimia Forensik)

 

Mohamad Afiq Mohamed Huri1*, Umi Kalthom Ahmad1, Roliana Ibrahim2, Mustafa Omar3

 

1Department of Chemistry, Faculty of Science

2Information System Department, Faculty of Computing

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

3Science & Technology Research Institute of Defense (STRIDE),

48100 Batu Arang, Selangor, Malaysia

 

*Corresponding author: afiqhuri91@gmail.com

 

 

Received: 10 August 2016; Accepted: 19 January 2017

 

 

Abstract

The growing threat of terrorism activities has caused an urgent need of improved forensic explosive analysis. Complex matrices, limited samples, and ambiguous interpretations serve as challenges for a forensic chemist  in order to link the evidence to the perpetrator of the crime. This review focuses on three aspects namely screening techniques, extraction techniques, and instrumental techniques. For the screening techniques, this review focuses on fast detection based on chemical respond for pre- and post-explosion residues. Different types of extraction methods including swabbing technique, solid phase extraction, and solid phase microextraction were discussed. Instrumental techniques covered in this review included gas chromatography, high performance liquid chromatography, ion chromatography and capillary electrophoresis.

 

Keywords:  explosive residue, forensic chemistry, screening techniques, extraction techniques, instrumental techniques

 

Abstrak

Peningkatan ancaman  aktiviti keganasan telah membawa kesedaran akan perlunya penambahbaikan  dalam analisis forensik. Matriks sampel yang kompleks, sampel terhad dan penafsiran yang tidak jelas menjadi satu cabaran dalam bidang kimia forensik untuk mengaitkan antara bahan bukti dan pelaku jenayah. Ulasan ini akan memberi tumpuan kepada tiga bahagian iaitu teknik saringan, teknik pengekstrakan dan teknik instrumen. Untuk kaedah saringan, kajian ini akan memberi tumpuan kepada pengesanan pantas residu letupan berdasarkan tindak balas kimia untuk sebelum dan selepas letupan. Pelbagai jenis kaedah pengekstrakan dibincangkan termasuk teknik sapuan, pengekstrakan fasa pepejal, dan pengekstrakan fasa pepejal mikro. Teknik peralatan yang akan dibincangkan dalam ulasan ini pula melibatkan kromatografi gas, kromatografi cecair berprestasi tinggi, kromatografi ion dan elektroforesis rerambut.

 

Kata kunci:  residu letupan, kimia forensik, teknik saringan, teknik pengekstrakan, teknik instrumentasi

 

References

1.             Leistedt, S. J. (2013). Behavioural aspects of terrorism. Forensic Science International. 228(1–3): 21 – 27.

2.             Miguel, E. and Roland, G. (2011). The long-run impact of bombing Vietnam. Journal of Development Economics, 96(1): 1 – 15.

3.             Global Terrorism Database (2015)  Available from: http://www.start.umd.edu/gtd [Date access 20 June 2015].

4.             Royds, D., Lewis, S. W. and Taylor, A. M. (2005). A case study in forensic chemistry: The Bali bombings. Talanta, 67(2): 262 – 268.

5.             Landman, A., Teich, J. M., Pruitt, P., Moore, S. E., Theriault, J., Dorisca, E., Harris, S., Crim, H., Lurie, N. and Goralnick, E. (2015). The Boston marathon bombings mass casualty incident: One emergency department’s information systems challenges and opportunities. Annals Emergency Medicine, 66(1): 51 – 59.

6.             Hicks, M. H., Dardagan, H., Bagnall, P. M., Spagat, M., and Sloboda, J. A. (2011). Casualties in civilians and coalition soldiers from suicide bombings in Iraq, 2003 – 2010: A descriptive study. Lancet, 378(9794): 906 – 914.

7.             Yavuz, M. S., Asirdizer, M., Cetin, G., Yavuz, M. F. Cansunar, F. N. and Kolusayin, R. O. (2004). Deaths due to terrorist bombings in Istanbul (Turkey). Journal Clinical Forensic Medicine, 11(6): 308 – 315.

8.             Bosnar, A., Stemberga, V., Coklo, M., Grgurevic, E., Zamolo, G., Cucic, T. and di Nunno, N. (2006). War and suicidal deaths by explosives in southwestern Croatia. Archives of Medical Research, 37(3):  392 – 394.

9.             Yinon, J. and Zitrin, S. (1981). The analysis of explosives. 1st ed. England: Pergamon press. pp. 59 –118.

10.          Lahoda, K. G., Collin, O. L., Mathis, J. A., LeClair, H. E., Wise, S. H. and McCord, B. R. (2008). A survey of background levels of explosives and related compounds in the environment. Journal of Forensic Sciences, 53(4): 802 – 806.

11.          Singh, S. (2007). Sensors – An effective approach for the detection of explosives. Journal of Hazardous Materials, 144(1–2): 15 – 28.

12.          Yinon, J. and Zitrin, S. (1996). Modern methods and applications in analysis of explosives. 1st ed. England: John Wiley & Sons. pp. 2 – 213.

13.          Adams, D. E., Mabry, J. P., McCoy, M. R. and Lord, W. D. (2013). Challenges for forensic science: New demands in todays world. Australian Journal of Forensic Sciences, 45(4): 347 – 355.

14.          Akhavan, J. (1991). Analysis of high-explosive samples by fourier transform raman spectroscopy. Spectrochimica Acta Part A: Molecular Spectroscopy. 47(9–10): 1247 – 1250.

15.          Varga, R. and Ulbrich, P. (2004). Some experience with trace analysis of post-explosion residues. Academic and Applied Research in Public Management Science. 3(4): 633 – 646.

16.          Ahmad, U. K., Rajendran, S., Ling L. W. and Hooi, Y. C. Hooi, (2008). Forensic analysis of high explosives residues in post-blast water samples employing solid phase extraction for analyte pro-concentration. Malaysian Journal of Analytical Sciences, 12(2): 367 – 374.

17.          Taylor, S., Hewitt, A., Lever, J., Hayes, C., Perovich, L., Thorne, P. and Daghlian, C. (2004). TNT particle size distributions from detonated 155-mm howitzer rounds. Chemosphere, 55(3): 357 – 367.

18.          Johns, C., Shellie, R. A., Potter, O. G., O’Reilly, J. W., Hutchinson, J. P., Guijt, R. M., Breadmore, M. C., Hilder, E. F., Dicinoski, G. W. and Haddad, P. R. (2008). Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues. Journal of Chromatography A, 1182(2): 205 –214.

19.          Thompson, R. Q., Fetterolf, D. D., Miller, M. L. and Mothershead R. F. (1999). Aqueous recovery from cotton swabs of organic explosives residue followed by solid phase extraction. Journal of Forensic Sciences, 44(4): 795 – 804.

20.          Hutchinson, J. P., Evenhuis, C. J., Johns, C., Kazarian, A. A., Breadmore, M. C., Macka, M., Hilder, E. F. and Haddad, P. R. (2007). Identification of inorganic improvised explosive devices by analysis of postblast residues using portable capillary electrophoresis instrumentation and indirect photometric detection with a light-emitting diode. Analytical Chemistry, 79(18): 7005 – 7013.

21.          Borusiewicz, R., Zadora, G. and Zieba-Palus, J. (2013). Chemical analysis of post explosion samples obtained as a result of model field experiments. Talanta, 116: 630 – 636.

22.          Abdul-Karim, N., Blackman, C. S., Gill, P. P., Wingstedt, E. M. M. and Reif, B. A. F. (2014). Post-blast explosive residue-a review of formation and dispersion theories and experimental research. RSC Advances, 4(97): 54354 – 54371.

23.          Song-im, N., Benson, S. and Lennard, C. (2013). Stability of explosive residues in methanol/water extracts, on alcohol wipes and on a glass surface. Forensic Science International. 226(1–3): 244 – 253.

24.          Miller, C. J., Elias, G., Schmitt, N. S. and Rae, C. (2010). Identification of explosives from porous materials: Applications using reverse phase high performance liquid chromatography and gas chromatography. Sensing and Imaging: An International Journal, 11(2): 61 – 75.

25.          Ahmad, U. K., Rajendran, S. and Hassan, S. A. (2008). Forensic analysis of explosive residues from hand swabs. Malaysian Journal of Analytical Sciences, 12(1): 213 – 226.

26.          Twibell, J. D., Turner, S. L., Smalldon, K. W. and Higgs, D. G. (1984). The persistence of military explosives on hands. Journal of Forensic Sciences, 29(1): 284 – 290.

27.          Ahmad, U. K., Bakar, N. H. A. and Abdullah, S. A. A. S. (2012). Analysis of C4 explosive residues on post blast hair samples. Jurnal Teknologi, 57(1): 163 – 171.

28.          Oxley, J. C., Smith, J. L., Bernier, E., Moran, J. S. and Luongo, J. (2009). Hair as forensic evidence of explosive handling. Propellants, Explosives, Pyrotechnics. 34(4): 307 – 314.

29.          Huri, M. A. M. and Ahmad, U. K. (2014). Forensic analysis of high explosive residues from selected cloth. Malaysian Journal of Analytical Sciences, 18(1): 68 – 77.

30.          Walsh, M. E. (2001). Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta, 54(3): 427 – 438.

31.          Bausinger, T., Dehner, U. and Preub, J. (2004). Determination of mono-, di- and trinitronaphthalenes in soil samples contaminated by explosives. Chemosphere, 57(8):  821 – 829.

32.          Babaee, S. and Beiraghi, A. (2010). Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples. Analytica Chimica Acta, 662(1): 9 – 13.

33.          Kamyshny, A., Magdassi, S., Avissar, Y. and Almog, J. (2003). Water-soaked evidence: Detectability of explosive traces after immersion in water. Journal of Forensic Sciences, 48(2): 312 –317.

34.          Monteil-Rivera, F., Beaulieu, C. Deschamps, S. Paquet, L. and Hawari, J. (2004). Determination of explosives in environmental water samples by solid-phase microextraction–liquid chromatography. Journal of Chromatography A. 1048(2): 213 – 221.

35.          McCorkell, W. J. and Griffin, R. M. (1998). An overview of the scientific examinations performed after an explosion on the Shankill road. Science and Justice, 38(2): 75 –79.

36.          Hawthorne, S. B., Lagadec, A. J. M., Kalderis, D., Lilke, A. V. and Miller, D. J. (2000). Pilot-scale destruction of TNT, RDX, and HMX on contaminated soils using subcritical water. Environmental Science and Technology, 34(15): 3224 – 3228.

37.          Hoffman, C. M. and Byall, E. B. (1974). Identification of explosive residues in bomb scene investigations. Journal of Forensic Sciences, 19(1): 54 – 63.

38.          Sara, M. and Ellen. O. L. (2015). Timeline of Boston marathon bombing events. Available from: http://www.boston.com/news/local/massachusetts/2015/01/05/timeline-boston-marathon-bombing-eve nts/qiYJmANm6DYxqsusVq66yK/story.html. [Date access 25 November 2015].

39.          Oam, D. R. (2013). A ten year retrospective of the bombing campaign in Indonesia by terrorists, 2002–2006. Australian Journal of Forensic Sciences, 45(2): 123 – 146.

40.          Reynolds, J., Nunes, P. Whipple, R. and Alcaraz, A. (2006). On-site analysis of explosives in various matrices. NATO Security through Science Series C: Environmental Security. Springer: pp. 27 – 32.

41.          Yinon, J. (2002). Field detection and monitoring of explosives. TrAC Trends in Analytical Chemistry. 21(4): 292 – 301.

42.          Germain, M. E. and Knapp, M. J. (2009). Optical explosives detection: From color changes to fluorescence turn-on. Chemical Society Reviews, 38(9): 2543 – 2555.

43.          Stancl, M. and Kyncl, M. (2008). Some detection procedures for liquid explosives, in Detection of liquid explosives and flammable agents in connection with terrorism, H. Schubert and A. Kuznetsov, Editors, Springer Netherlands. pp. 79 – 96.

44.          Fisco, W. (1975). A portable explosives identification kit for field use. Journal of Forensic Science, 20(1): 141 – 148.

45.          Johns, S. H., Wist, A. A., and Najam, A. R. (1979). Spot tests: A color chart reference for forensic chemists. Journal of Forensic Sciences, 24(3): 631 – 649.

46.          Nambayah, M. and Quickenden, T. I. (2004). A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals. Talanta, 63(2): 461 – 467.

47.          Furton, K. G. and Myers, L. J. (2001). The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta, 54(3): 487 – 500.

48.          Quignon, P., Kirkness, E., Cadieu, E., Touleimat, N., Guyon, R., Renier, C., Hitte, C., Andre, C., Fraser, C., and Galibert, F. (2003). Comparison of the canine and human olfactory receptor gene repertoires. Genome Biology, 4(12): R80.

49.          Wetter, O. E. (2013). Imaging in airport security: Past, present, future, and the link to forensic and clinical radiology. International Journal of Industrial Ergonomics, 1(4): 152 – 160.

50.          Wells, K. and Bradley, D. A. (2012). A review of X-ray explosives detection techniques for checked baggage. Applied Radiation and Isotopes, 70(8): 1729 – 1746.

51.          Michel, S., Mendes, M., de Ruiter, J. C., Koomen, G. C. M. and Schwaninger, A. (2014). Increasing X-ray image interpretation competency of cargo security screeners. International Journal of Industrial Ergonomics, 44(4): 551 – 560.

52.          Moore, D. S. (2007). Recent advances in trace explosives detection instrumentation. Sensing and Imaging: An International Journal, 8(1): 9 – 38.

53.          Yinon, K. (2007). Counterterrorist detection techniques of explosives.1st  ed. Uk: Elsevier: pp. 1 – 440.

54.          Caygill, J. S., Davis, F. and Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88: 14 – 29.

55.          Mäkinen, M., Nousiainen, M. and Sillanpää, M. (2011). Ion spectrometric detection technologies for ultra-traces of explosives: A review. Mass Spectrometry Reviews, 30(5): 940 – 973.

56.          Ewing, R. G., Waltman, M. J., Atkinson, D. A., Grate, J. W., and Hotchkiss, P. J. (2013). The vapor pressures of explosives. TrAC  Trends in Analytical Chemistry, 42(1): 35 – 48.

57.          Ewing, R. G., Atkinson, D. A., Eiceman, G. A. and Ewing, G. J. (2001). A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta, 54(3): 515 – 529.

58.          Voyksner, R. D. and Yinon, J. (1986). Trace analysis of explosives by thermospray high-performance liquid chromatography – mass spectrometry. Journal of Chromatography A, 354: 393 – 405.

59.          Na, N., C. Zhang, M. Zhao, S. Zhang, C. Yang, X. Fang, and X. Zhang, (2007). Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. Journal of Mass Spectrometry, 42(8): 1079 – 1085.

60.          Reid A. G., Klasmeier, J. and Hill Jr, H. H. (2000). Analysis of explosives using electrospray ionization/ion mobility spectrometry (ESI/IMS). Talanta. 50(6): 1291 – 1298.

61.          Khayamian, T., Tabrizchi, M. and Jafari, M. T. (2003). Analysis of 2,4,6-trinitrotoluene, pentaerythritol tetranitrate and cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry. Talanta, 59(2): 327 – 333.

62.          Ewing, R. G., Clowers, B. H. and Atkinson, D. A. (2013). Direct real-time detection of vapors from explosive compounds. Analytical Chemistry, 85(22): 10977 – 10983.

63.          Ruslan, N. N. (2009). A spot test kit for the field detection of selected explosives, Universiti Teknologi Malaysia. Thesis Bachelor of Science (Industrial Chemistry).

64.          Mohan, M. and Chand, D. K. (2014). Visual colorimetric detection of TNT and 2,4-DNT using as-prepared hexaazamacrocycle-capped gold nanoparticles. Analytical Methods, 6(1): 276 – 281.

65.          Feigl, F. and Anger, V.(1972). Spot tests in inorganic analysis: Elsevier Publishing Company.

66.          Furton, K.G., Almirall, J. R., Bi, M., Wang, J. and Wu, L. (2000). Application of solid-phase microextraction to the recovery of explosives and ignitable liquid residues from forensic specimens. Journal of Chromatography A, 885(1-2): 419 – 432.

67.          DeTata, D. A., Collins, P. A., and McKinley, A. J. (2013). A comparison of common swabbing materials for the recovery of organic and inorganic explosive residues. Journal of Forensic Sciences. 58(3): 757 – 763.

68.          Song-im, N., Benson, S. and Lennard, C. (2012). Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues. Forensic Science International, 222(1-3): 102 – 110.

69.          Ahmad, U. K., Tze, O. S., Ghazali, M. F., Hooi, Y. C., and Abdullah, M. K. (2011). Analysis of anionic post-blast residues of low explosives from soil samples of forensic interest. Malaysian Journal of Analytical Sciences. 15(2): 213 – 226.

70.          Williford, C.W. and Mark, B. R. (1999). Extraction of tnt from aggregate soil fractions. Journal of Hazardous Materials, 66(1-2): 1 – 13.

71.          Halasz, A., Groom, C., Zhou, E., Paquet, L., Beaulieu, C., Deschamps, S., Corriveau, A., Thiboutot, S., Ampleman, G., Dubois, C. and Hawari, J. (2002). Detection of explosives and their degradation products in soil environments. Journal of Chromatography A, 963(1): 411 – 418.

72.          Abd-Talib, N., Mohd-Setapar, S. H. and Khamis, A. K. (2014). The benefits and limitations of methods development in solid phase extraction: Mini review. Jurnal Teknologi (Sciences and Engineering), 69(4): 69 – 72.

73.          Warren, D., Hiley, R. W., Phillips, S. A. and Ritchie, K. (1999). Novel technique for the combined recovery, extraction and clean-up of forensic organic and inorganic trace explosives samples. Science and Justice. 39(1): 11 – 18.

74.          Calderara, S., Gardebas, D. and Martinez, F. (2003). Solid phase micro extraction coupled with on-column GC/ECD for the post-blast analysis of organic explosives. Forensic Science International,  137(1): 6 – 12.

75.          Ahmad, U. K. and Heng, K. K. (2007). Solid phase microextraction-gas chromatography for the analysis of explosives in post blast water samples. Jurnal Teknologi, 46: 59 – 74.

76.          Kolla, P. (1994). Gas-chromatography, liquid-chromatography and ion chromatography adapted to the trace analysis of explosives. Journal of Chromatography A, 674(1-2): 309 – 318.

77.          Pan, X., Zhang, B. and Cobb, G. P. (2005). Extraction and analysis of trace amounts of cyclonite (RDX) and its nitroso-metabolites in animal liver tissue using gas chromatography with electron capture detection (GC-ECD). Talanta,  67(4): 816 – 823.

78.          Bowerbank, C. R., Smith, P. A., Fetterolf, D. D. and Lee, M. L. (2000). Solvating gas chromatography with chemiluminescence detection of nitroglycerine and other explosives. Journal of Chromatography A. 902(2): 413 – 419.

79.          Jiménez, A. M. and Navas, M. J. (2004). Chemiluminescence detection systems for the analysis of explosives. Journal of Hazardous Materials, 106(1): 1 – 8.

80.          Chakrabortty, A., Bagchi, S. and Chandra L. S. (2015). Studies of fire debris from bomb blasts using ion chromatography, gas chromatography–mass spectrometry and fluorescence measurements – evidence of ammonium nitrate, wax-based explosives and identification of a biomarker. Australian Journal of Forensic Sciences, 47(1): 83 – 94.

81.          Fan, W. and Almirall, J. (2014). High-efficiency headspace sampling of volatile organic compounds in explosives using capillary microextraction of volatiles (CMV) coupled to gas chromatography-mass spectrometry (GC-MS) microextraction techniques. Analytical and Bioanalytical Chemistry, 406(8): 2189 – 2195.

82.          Perr, J. M., Furton, K. G., and Almirall, J. R. (2005). Gas chromatography positive chemical ionization and tandem mass spectrometry for the analysis of organic high explosives. Talanta, 67(2): 430 – 436.

83.          Kozole, J., Levine, L. A., Tomlinson-Phillips, J. and Stairs, J. R. (2015). Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry. Talanta, 140: 10 – 19.

84.          Ahmad, U. K., Harun S. N., and Hooi, Y. C. (2011). Forensic analysis of nitroglycerin in post blast samples. 3rd International Conferences and Workshops on Basic and Applied Sciences: pp. 1 – 7.

85.          Makarov, A., LoBrutto, R., Christodoulatos, C. and Jerkovich, A. (2009). The use of ultra high-performance liquid chromatography for studying hydrolysis kinetics of CL-20 and related energetic compounds. Journal of Hazardous Materials, 162(2-3): 1034 – 1040.

86.          Schramm, S., Léonço, D., Hubert, C., Tabet, J.-C., and Bridoux, M. (2015). Development and validation of an isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry method for the reliable quantification of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 14 other explosives and their degradation products in environmental water samples. Talanta, 143: 271 – 278.

87.          Meng, H. B., Wang, T. R., Guo, B. Y., Hashi, Y., Guo, C. X. and Lin, J. M. (2008). Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography. Talanta, 76(2): 241 – 245.

88.          Hargadon, K. A. and McCord, B. R. (1992). Explosive residue analysis by capillary electrophoresis and ion chromatography. Journal of Chromatography A, 602(1–2): 241 – 247.

89.          Hopper, K. G., LeClair, H. and McCord, B. R. (2005). A novel method for analysis of explosives residue by simultaneous detection of anions and cations via capillary zone electrophoresis. Talanta, 67(2): 304 – 312.

90.          Cruces-Blanco, C., Gamiz-Gracia, L. and Garcia-Campana, A. M. (2007). Applications of capillary electrophoresis in forensic analytical chemistry. TrAC Trends in Analytical Chemistry. 26(3): 215 – 226.

91.          Ahmad, U. K., Jamari, N. L. and Nagayah, S. (2012). Simultaneous determination of inorganic ions in post-blast residues using capillary electropheresis. Malaysian Journal of Analytical Sciences. 12(1): 25 – 31.

92.          Pristera, F., Halik, M., Castelli, A. and Fredericks, W. (1960). Analysis of explosives using infrared spectroscopy. Analytical Chemistry, 32(4):  495 – 508.

93.          Achuthan, C. P. and Jose, C. I. (1990). Studies on octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) polymorphism. Propellants, Explosives, Pyrotechnics. 15(6): 271 – 275.

94.          Primera-Pedrozo, O. M., Soto-Feliciano, Y. M., Pacheco-Londoño, L. C. and Hernández-Rivera, S. P. (2009). Detection of high explosives using reflection absorption infrared spectroscopy with fiber coupled grazing angle probe/FTIR. Sensing and Imaging: An International Journal, 10(1-2): 1 – 13.

95.          Mantler, M. and Schreiner, M. (2011). X-ray analysis of objects of art and archaeology. Journal of Radioanalytical and Nuclear Chemistry, 247(3): 635 – 644.

96.          Sánchez Ramos, S., Bosch Reig, F., Gimeno Adelantado, J., Yusá Marco, D. and Doménech Carbó, A. (2014). Application of XRF, XRD, thermal analysis, and voltammetric techniques to the study of ancient ceramics. Analytical and Bioanalytical Chemistry, 373(8): 893 – 900.

97.          Soldate, A. M. and Noyes, R. M. (1947). X-ray diffraction patterns for the identification of crystalline constituents of explosives. Industrial and Engineering Chemistry, 19(7): 442 – 444.

98.          O'Flynn, D., Reid, C. B., Christodoulou, C., Wilson, M. D., Veale, M. C., Seller, P., Hills, D. Desai, H., Wong, B. and Speller, R. (2013). Explosive detection using pixellated X-ray diffraction (PixD). Journal of Instrumentation, 8(3): 1 – 15.

99.          Almog, J., Espino, D., Tamiri, T. and Sonenfeld, D. (2013). Trace analysis of urea nitrate in post-blast debris by GC/MS. Forensic Science International, 224(1–3): 80 – 83.

100.      Banas, K., Banas, A., Moser, H. O., Bahou, M., Li, W., Yang, P., Cholewa, M. and Lim, S. K. (2010). Multivariate analysis techniques in the forensics investigation of the postblast residues by means of fourier transform-infrared spectroscopy. Analytical Chemistry, 82(7): 3038 – 3044.

101.      Paull, B., C. Roux, M. Dawson, and P. Doble, (2004). Rapid screening of selected organic explosives by high performance liquid chromatography using reversed-phase monolithic columns. Journal of Forensic Sciences, 49(6): 1181 – 1186.

102.      Xu, X., Van De Craats, A. M., Kok, E. M. and De Bruyn, P. C. A. M. (2004). Trace analysis of peroxide explosives by high performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HPLC-APCI-MS/MS) for forensic applications. Journal of Forensic Sciences, 49(6): 1230 – 1236.

103.      Oehrle, S. A., (1996). Analysis of nitramine and nitroaromatic explosives by capillary electrophoresis. Journal of Chromatography A, 745(1-2): 233 – 237.

104.      Lang, G.-H. L. and Boyle, K. M. (2009). The analysis of black powder substitutes containing ascorbic acid by ion chromatography/mass spectrometry. Journal of Forensic Sciences, 54(6): 1315 – 1322.

105.      Sun, J., Shu, X., Liu, Y., Zhang, H., Liu, X., Jiang, Y., Kang, B., Xue, C. and Song, G. (2011). Investigation on the thermal expansion and theoretical density of 1,3,5trinitro1,3,5triazacyclohexane. Propellants, Explosives, Pyrotechnics, 36(4): 341 – 346.

106.      Koudryashov, V. I., Serebryakov, A. S. and Smirnov, V. V. (2006). Investigation of possibility to detect the detonators of the explosive devices by means of EC XRF approach, in detection and disposal of improvised explosives, Schubert, H. and Kuznetsov, A. Editors, Springer Netherlands: pp. 223 – 226.

107.      Kleiböhmer, W., K. Cammann, J. Robert, and Mussenbrock, E. (1993). Determination of explosives residues in soils by micellar electrokinetic capillary chromatography and high-performance liquid chromatography: A comparative study. Journal of Chromatography A, 638(2): 349 – 356.

108.      Smedts, B. R., Baeyens, W. and De Bisschop, H. C. (2003). Separation of arsines and trinitrotoluene by reversed phase high performance liquid chromatography and micellar electrokinetic capillary chromatography. Analytica Chimica Acta, 495(1-2): 239 – 247.

 




Previous                    Content                    Next