Malaysian Journal of Analytical Sciences
Vol 21 No 2 (2017): 267 - 282
DOI:
https://doi.org/10.17576/mjas-2017-2102-01
A
REVIEW OF EXPLOSIVE RESIDUE DETECTION FROM FORENSIC CHEMISTRY PERSPECTIVE
(Satu
Ulasan Pengesanan Residu Letupan dari Sudut Pandangan Kimia Forensik)
Mohamad Afiq Mohamed Huri1*, Umi Kalthom
Ahmad1, Roliana Ibrahim2, Mustafa Omar3
1Department of
Chemistry, Faculty of Science
2Information
System Department, Faculty of Computing
Universiti Teknologi Malaysia, 81310 UTM Johor
Bahru, Johor, Malaysia
3Science &
Technology Research Institute of Defense (STRIDE),
48100 Batu
Arang, Selangor, Malaysia
*Corresponding author: afiqhuri91@gmail.com
Received:
10 August 2016; Accepted: 19 January 2017
Abstract
The growing
threat of terrorism activities has caused an urgent need of improved forensic
explosive analysis. Complex matrices, limited samples, and ambiguous
interpretations serve as challenges for a
forensic chemist
in order to link the evidence to the perpetrator of the crime.
This review focuses on three aspects namely screening techniques, extraction
techniques, and instrumental techniques. For the screening techniques, this
review focuses on fast detection based on
chemical respond for pre- and post-explosion residues. Different types of
extraction methods including swabbing technique, solid phase extraction, and
solid phase microextraction were discussed.
Instrumental techniques covered in this review included gas chromatography, high performance liquid chromatography, ion
chromatography and capillary electrophoresis.
Keywords: explosive residue, forensic
chemistry, screening techniques, extraction techniques, instrumental techniques
Abstrak
Peningkatan ancaman
aktiviti keganasan telah membawa kesedaran akan perlunya
penambahbaikan dalam analisis forensik.
Matriks sampel yang kompleks, sampel terhad dan penafsiran
yang tidak jelas menjadi satu cabaran dalam bidang kimia
forensik untuk mengaitkan antara bahan bukti dan pelaku jenayah. Ulasan ini
akan memberi tumpuan kepada tiga bahagian iaitu teknik saringan, teknik
pengekstrakan dan teknik instrumen. Untuk kaedah saringan, kajian ini akan
memberi tumpuan kepada pengesanan pantas residu letupan berdasarkan tindak
balas kimia untuk sebelum dan selepas letupan. Pelbagai jenis kaedah
pengekstrakan dibincangkan termasuk teknik sapuan, pengekstrakan fasa pepejal,
dan pengekstrakan fasa pepejal mikro. Teknik peralatan yang akan dibincangkan
dalam ulasan ini pula melibatkan kromatografi gas, kromatografi cecair
berprestasi tinggi, kromatografi ion dan elektroforesis rerambut.
Kata kunci: residu letupan, kimia forensik, teknik
saringan, teknik pengekstrakan, teknik instrumentasi
References
1.
Leistedt, S. J. (2013). Behavioural aspects of terrorism. Forensic Science International.
228(1–3): 21 – 27.
2.
Miguel, E. and Roland, G. (2011). The long-run impact of
bombing Vietnam. Journal of Development
Economics, 96(1): 1 – 15.
3.
Global Terrorism Database (2015) Available from: http://www.start.umd.edu/gtd
[Date access 20 June 2015].
4.
Royds, D., Lewis, S. W. and Taylor, A. M. (2005). A case
study in forensic chemistry: The Bali bombings. Talanta, 67(2): 262 – 268.
5.
Landman, A., Teich, J. M., Pruitt, P., Moore, S. E.,
Theriault, J., Dorisca, E., Harris, S., Crim, H., Lurie, N. and Goralnick, E.
(2015). The Boston marathon bombings mass casualty incident: One emergency
department’s information systems challenges and opportunities. Annals Emergency Medicine, 66(1): 51 –
59.
6.
Hicks, M. H., Dardagan, H., Bagnall, P. M., Spagat, M., and
Sloboda, J. A. (2011). Casualties in civilians and coalition soldiers from
suicide bombings in Iraq, 2003 – 2010: A descriptive study. Lancet, 378(9794): 906 – 914.
7.
Yavuz, M. S., Asirdizer, M., Cetin, G., Yavuz, M. F.
Cansunar, F. N. and Kolusayin, R. O. (2004). Deaths due to terrorist bombings
in Istanbul (Turkey). Journal Clinical
Forensic Medicine, 11(6): 308 – 315.
8.
Bosnar, A., Stemberga, V., Coklo, M., Grgurevic, E., Zamolo,
G., Cucic, T. and di Nunno, N. (2006). War and suicidal deaths by explosives in
southwestern Croatia. Archives of Medical
Research, 37(3): 392 – 394.
9.
Yinon, J. and Zitrin, S. (1981). The analysis of explosives.
1st ed. England: Pergamon press. pp. 59 –118.
10.
Lahoda, K. G., Collin, O. L., Mathis, J. A., LeClair, H. E.,
Wise, S. H. and McCord, B. R. (2008). A survey of background levels of
explosives and related compounds in the environment. Journal of Forensic Sciences, 53(4): 802 – 806.
11.
Singh, S. (2007). Sensors – An effective approach for the
detection of explosives. Journal of Hazardous Materials, 144(1–2): 15 –
28.
12.
Yinon, J. and Zitrin, S. (1996). Modern methods and
applications in analysis of explosives. 1st ed. England: John Wiley
& Sons. pp. 2 – 213.
13.
Adams, D. E., Mabry, J. P., McCoy, M. R. and Lord, W. D.
(2013). Challenges for forensic science: New demands in todays world. Australian Journal of Forensic Sciences,
45(4): 347 – 355.
14.
Akhavan, J. (1991). Analysis of high-explosive samples by
fourier transform raman spectroscopy. Spectrochimica
Acta Part A: Molecular Spectroscopy. 47(9–10): 1247 – 1250.
15.
Varga, R. and Ulbrich, P. (2004). Some experience with trace
analysis of post-explosion residues. Academic and Applied Research in Public
Management Science. 3(4): 633 – 646.
16.
Ahmad, U. K., Rajendran, S., Ling L. W. and Hooi, Y. C. Hooi,
(2008). Forensic analysis of high explosives residues in post-blast water
samples employing solid phase extraction for analyte pro-concentration. Malaysian Journal of Analytical Sciences, 12(2):
367 – 374.
17.
Taylor, S., Hewitt, A., Lever, J., Hayes, C., Perovich, L.,
Thorne, P. and Daghlian, C. (2004). TNT particle size distributions from
detonated 155-mm howitzer rounds. Chemosphere,
55(3): 357 – 367.
18.
Johns, C., Shellie, R. A., Potter, O. G., O’Reilly, J. W.,
Hutchinson, J. P., Guijt, R. M., Breadmore, M. C., Hilder, E. F., Dicinoski, G.
W. and Haddad, P. R. (2008). Identification of homemade inorganic explosives by
ion chromatographic analysis of post-blast residues. Journal of Chromatography A, 1182(2): 205 –214.
19.
Thompson, R. Q., Fetterolf, D. D., Miller, M. L. and
Mothershead R. F. (1999). Aqueous recovery from cotton swabs of organic
explosives residue followed by solid phase extraction. Journal of Forensic Sciences, 44(4): 795 – 804.
20.
Hutchinson, J. P., Evenhuis, C. J., Johns, C., Kazarian, A.
A., Breadmore, M. C., Macka, M., Hilder, E. F. and Haddad, P. R. (2007).
Identification of inorganic improvised explosive devices by analysis of
postblast residues using portable capillary electrophoresis instrumentation and
indirect photometric detection with a light-emitting diode. Analytical
Chemistry, 79(18): 7005 – 7013.
21.
Borusiewicz, R., Zadora, G. and Zieba-Palus, J. (2013).
Chemical analysis of post explosion samples obtained as a result of model field
experiments. Talanta, 116: 630 – 636.
22.
Abdul-Karim, N., Blackman, C. S., Gill, P. P., Wingstedt, E.
M. M. and Reif, B. A. F. (2014). Post-blast explosive residue-a review of
formation and dispersion theories and experimental research. RSC Advances, 4(97): 54354 – 54371.
23.
Song-im, N., Benson, S. and Lennard, C. (2013). Stability of
explosive residues in methanol/water extracts, on alcohol wipes and on a glass
surface. Forensic Science International.
226(1–3): 244 – 253.
24.
Miller, C. J., Elias, G., Schmitt, N. S. and Rae, C. (2010).
Identification of explosives from porous materials: Applications using reverse
phase high performance liquid chromatography and gas chromatography. Sensing and Imaging: An International
Journal, 11(2): 61 – 75.
25.
Ahmad, U. K., Rajendran, S. and Hassan, S. A. (2008).
Forensic analysis of explosive residues from hand swabs. Malaysian Journal of Analytical Sciences, 12(1): 213 – 226.
26.
Twibell, J. D., Turner, S. L., Smalldon, K. W. and Higgs, D.
G. (1984). The persistence of military explosives on hands. Journal of Forensic Sciences, 29(1): 284
– 290.
27.
Ahmad, U. K., Bakar, N. H. A. and Abdullah, S. A. A. S.
(2012). Analysis of C4 explosive residues on post blast hair samples. Jurnal Teknologi, 57(1): 163 – 171.
28.
Oxley, J. C., Smith, J. L., Bernier, E., Moran, J. S. and
Luongo, J. (2009). Hair as forensic evidence of explosive handling. Propellants, Explosives, Pyrotechnics.
34(4): 307 – 314.
29.
Huri, M. A. M. and Ahmad, U. K. (2014). Forensic analysis of
high explosive residues from selected cloth. Malaysian Journal of Analytical Sciences, 18(1): 68 – 77.
30.
Walsh, M. E. (2001). Determination of nitroaromatic,
nitramine, and nitrate ester explosives in soil by gas chromatography and an
electron capture detector. Talanta,
54(3): 427 – 438.
31.
Bausinger, T., Dehner, U. and Preub, J. (2004). Determination
of mono-, di- and trinitronaphthalenes in soil samples contaminated by
explosives. Chemosphere, 57(8): 821 – 829.
32.
Babaee, S. and Beiraghi, A. (2010). Micellar extraction and
high performance liquid chromatography-ultra violet determination of some
explosives in water samples. Analytica
Chimica Acta, 662(1): 9 – 13.
33.
Kamyshny, A., Magdassi, S., Avissar, Y. and Almog, J. (2003).
Water-soaked evidence: Detectability of explosive traces after immersion in
water. Journal of Forensic Sciences,
48(2): 312 –317.
34.
Monteil-Rivera, F., Beaulieu, C. Deschamps, S. Paquet, L. and
Hawari, J. (2004). Determination of explosives in environmental water samples
by solid-phase microextraction–liquid chromatography. Journal of Chromatography A. 1048(2): 213 – 221.
35.
McCorkell, W. J. and Griffin, R. M. (1998). An overview of
the scientific examinations performed after an explosion on the Shankill road. Science and Justice, 38(2): 75 –79.
36.
Hawthorne, S. B., Lagadec, A. J. M., Kalderis, D., Lilke, A.
V. and Miller, D. J. (2000). Pilot-scale destruction of TNT, RDX, and HMX on
contaminated soils using subcritical water. Environmental
Science and Technology, 34(15): 3224 – 3228.
37.
Hoffman, C. M. and Byall, E. B. (1974). Identification of
explosive residues in bomb scene investigations. Journal of Forensic Sciences, 19(1): 54 – 63.
38.
Sara, M. and Ellen. O. L. (2015). Timeline of Boston marathon
bombing events. Available from:
http://www.boston.com/news/local/massachusetts/2015/01/05/timeline-boston-marathon-bombing-eve
nts/qiYJmANm6DYxqsusVq66yK/story.html. [Date access 25 November 2015].
39.
Oam, D. R. (2013). A ten year retrospective of the bombing
campaign in Indonesia by terrorists, 2002–2006. Australian Journal of Forensic Sciences, 45(2): 123 – 146.
40.
Reynolds, J., Nunes, P. Whipple, R. and Alcaraz, A. (2006).
On-site analysis of explosives in various matrices. NATO Security through Science Series C: Environmental Security.
Springer: pp. 27 – 32.
41.
Yinon, J. (2002). Field detection and monitoring of
explosives. TrAC Trends in Analytical
Chemistry. 21(4): 292 – 301.
42.
Germain, M. E. and Knapp, M. J. (2009). Optical explosives
detection: From color changes to fluorescence turn-on. Chemical Society Reviews, 38(9): 2543 – 2555.
43.
Stancl, M. and Kyncl, M. (2008). Some detection procedures
for liquid explosives, in Detection of liquid explosives and flammable agents
in connection with terrorism, H. Schubert and A. Kuznetsov, Editors, Springer Netherlands. pp. 79 – 96.
44.
Fisco, W. (1975). A portable explosives identification kit
for field use. Journal of Forensic Science, 20(1): 141 – 148.
45.
Johns, S. H., Wist, A. A., and Najam, A. R. (1979). Spot
tests: A color chart reference for forensic chemists. Journal of Forensic Sciences, 24(3): 631 – 649.
46.
Nambayah, M. and Quickenden, T. I. (2004). A quantitative
assessment of chemical techniques for detecting traces of explosives at
counter-terrorist portals. Talanta,
63(2): 461 – 467.
47.
Furton, K. G. and Myers, L. J. (2001). The scientific
foundation and efficacy of the use of canines as chemical detectors for
explosives. Talanta, 54(3): 487 –
500.
48.
Quignon, P., Kirkness, E., Cadieu, E., Touleimat, N., Guyon,
R., Renier, C., Hitte, C., Andre, C., Fraser, C., and Galibert, F. (2003).
Comparison of the canine and human olfactory receptor gene repertoires. Genome
Biology, 4(12): R80.
49.
Wetter, O. E. (2013). Imaging in airport security: Past,
present, future, and the link to forensic and clinical radiology. International Journal of Industrial Ergonomics,
1(4): 152 – 160.
50.
Wells, K. and Bradley, D. A. (2012). A review of X-ray
explosives detection techniques for checked baggage. Applied Radiation and Isotopes, 70(8): 1729 – 1746.
51.
Michel, S., Mendes, M., de Ruiter, J. C., Koomen, G. C. M.
and Schwaninger, A. (2014). Increasing X-ray image interpretation competency of
cargo security screeners. International Journal
of Industrial Ergonomics, 44(4): 551 – 560.
52.
Moore, D. S. (2007). Recent advances in trace explosives
detection instrumentation. Sensing and
Imaging: An International Journal, 8(1): 9 – 38.
53.
Yinon, K. (2007). Counterterrorist detection techniques of
explosives.1st ed. Uk:
Elsevier: pp. 1 – 440.
54.
Caygill, J. S., Davis, F. and Higson, S. P. J. (2012).
Current trends in explosive detection techniques. Talanta, 88: 14 – 29.
55.
Mäkinen, M., Nousiainen, M. and Sillanpää, M. (2011). Ion
spectrometric detection technologies for ultra-traces of explosives: A review. Mass Spectrometry Reviews, 30(5): 940 –
973.
56.
Ewing, R. G., Waltman, M. J., Atkinson, D. A., Grate, J. W.,
and Hotchkiss, P. J. (2013). The vapor pressures of explosives. TrAC
Trends in Analytical Chemistry, 42(1): 35 – 48.
57.
Ewing, R. G., Atkinson, D. A., Eiceman, G. A. and Ewing, G.
J. (2001). A critical review of ion mobility spectrometry for the detection of
explosives and explosive related compounds. Talanta,
54(3): 515 – 529.
58.
Voyksner, R. D. and Yinon, J. (1986). Trace analysis of
explosives by thermospray high-performance liquid chromatography – mass
spectrometry. Journal of Chromatography A,
354: 393 – 405.
59.
Na, N., C. Zhang, M. Zhao, S. Zhang, C. Yang, X. Fang, and X.
Zhang, (2007). Direct detection of explosives on solid surfaces by mass
spectrometry with an ambient ion source based on dielectric barrier discharge. Journal of Mass Spectrometry, 42(8):
1079 – 1085.
60.
Reid A. G., Klasmeier, J. and Hill Jr, H. H. (2000). Analysis
of explosives using electrospray ionization/ion mobility spectrometry
(ESI/IMS). Talanta. 50(6): 1291 –
1298.
61.
Khayamian, T., Tabrizchi, M. and Jafari, M. T. (2003).
Analysis of 2,4,6-trinitrotoluene, pentaerythritol tetranitrate and
cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion
mobility spectrometry. Talanta,
59(2): 327 – 333.
62.
Ewing, R. G., Clowers, B. H. and Atkinson, D. A. (2013).
Direct real-time detection of vapors from explosive compounds. Analytical Chemistry, 85(22): 10977 –
10983.
63.
Ruslan, N. N. (2009). A spot test kit for the field detection
of selected explosives, Universiti Teknologi Malaysia. Thesis Bachelor of
Science (Industrial Chemistry).
64.
Mohan, M. and Chand, D. K. (2014). Visual colorimetric
detection of TNT and 2,4-DNT using as-prepared hexaazamacrocycle-capped gold
nanoparticles. Analytical Methods,
6(1): 276 – 281.
65.
Feigl, F. and Anger, V.(1972). Spot tests in inorganic
analysis: Elsevier Publishing Company.
66.
Furton, K.G., Almirall, J. R., Bi, M., Wang, J. and Wu, L.
(2000). Application of solid-phase microextraction to the recovery of
explosives and ignitable liquid residues from forensic specimens. Journal of Chromatography A, 885(1-2):
419 – 432.
67.
DeTata, D. A., Collins, P. A., and McKinley, A. J. (2013). A
comparison of common swabbing materials for the recovery of organic and
inorganic explosive residues. Journal of
Forensic Sciences. 58(3): 757 – 763.
68.
Song-im, N., Benson, S. and Lennard, C. (2012). Evaluation of
different sampling media for their potential use as a combined swab for the
collection of both organic and inorganic explosive residues. Forensic Science International,
222(1-3): 102 – 110.
69.
Ahmad, U. K., Tze, O. S., Ghazali, M. F., Hooi, Y. C., and
Abdullah, M. K. (2011). Analysis of anionic post-blast residues of low
explosives from soil samples of forensic interest. Malaysian Journal of Analytical Sciences. 15(2): 213 – 226.
70.
Williford, C.W. and Mark, B. R. (1999). Extraction of tnt
from aggregate soil fractions. Journal of
Hazardous Materials, 66(1-2): 1 – 13.
71.
Halasz, A., Groom, C., Zhou, E., Paquet, L., Beaulieu, C.,
Deschamps, S., Corriveau, A., Thiboutot, S., Ampleman, G., Dubois, C. and
Hawari, J. (2002). Detection of explosives and their degradation products in
soil environments. Journal of Chromatography A, 963(1): 411 – 418.
72.
Abd-Talib, N., Mohd-Setapar, S. H. and Khamis, A. K. (2014).
The benefits and limitations of methods development in solid phase extraction:
Mini review. Jurnal Teknologi (Sciences
and Engineering), 69(4): 69 – 72.
73.
Warren, D., Hiley, R. W., Phillips, S. A. and Ritchie, K.
(1999). Novel technique for the combined recovery, extraction and clean-up of
forensic organic and inorganic trace explosives samples. Science and Justice. 39(1): 11 – 18.
74.
Calderara, S., Gardebas, D. and Martinez, F. (2003). Solid
phase micro extraction coupled with on-column GC/ECD for the post-blast
analysis of organic explosives. Forensic
Science International, 137(1): 6 –
12.
75.
Ahmad, U. K. and Heng, K. K. (2007). Solid phase
microextraction-gas chromatography for the analysis of explosives in post blast
water samples. Jurnal Teknologi, 46:
59 – 74.
76.
Kolla, P. (1994). Gas-chromatography, liquid-chromatography
and ion chromatography adapted to the trace analysis of explosives. Journal of Chromatography A, 674(1-2):
309 – 318.
77.
Pan, X., Zhang, B. and Cobb, G. P. (2005). Extraction and
analysis of trace amounts of cyclonite (RDX) and its nitroso-metabolites in
animal liver tissue using gas chromatography with electron capture detection
(GC-ECD). Talanta, 67(4): 816 – 823.
78.
Bowerbank, C. R., Smith, P. A., Fetterolf, D. D. and Lee, M.
L. (2000). Solvating gas chromatography with chemiluminescence detection of
nitroglycerine and other explosives. Journal
of Chromatography A. 902(2): 413 – 419.
79.
Jiménez, A. M. and Navas, M. J. (2004). Chemiluminescence
detection systems for the analysis of explosives. Journal of Hazardous Materials, 106(1): 1 – 8.
80.
Chakrabortty, A., Bagchi, S. and Chandra L. S. (2015).
Studies of fire debris from bomb blasts using ion chromatography, gas
chromatography–mass spectrometry and fluorescence measurements – evidence of
ammonium nitrate, wax-based explosives and identification of a biomarker. Australian Journal of Forensic Sciences,
47(1): 83 – 94.
81.
Fan, W. and Almirall, J. (2014). High-efficiency headspace
sampling of volatile organic compounds in explosives using capillary
microextraction of volatiles (CMV) coupled to gas chromatography-mass
spectrometry (GC-MS) microextraction techniques. Analytical and Bioanalytical Chemistry, 406(8): 2189 – 2195.
82.
Perr, J. M., Furton, K. G., and Almirall, J. R. (2005). Gas
chromatography positive chemical ionization and tandem mass spectrometry for
the analysis of organic high explosives. Talanta,
67(2): 430 – 436.
83.
Kozole, J., Levine, L. A., Tomlinson-Phillips, J. and Stairs,
J. R. (2015). Gas phase ion chemistry of an ion mobility spectrometry based
explosive trace detector elucidated by tandem mass spectrometry. Talanta, 140: 10 – 19.
84.
Ahmad, U. K., Harun S. N., and Hooi, Y. C. (2011). Forensic
analysis of nitroglycerin in post blast samples. 3rd International Conferences and Workshops on Basic and Applied
Sciences: pp. 1 – 7.
85.
Makarov, A., LoBrutto, R., Christodoulatos, C. and Jerkovich,
A. (2009). The use of ultra high-performance liquid chromatography for studying
hydrolysis kinetics of CL-20 and related energetic compounds. Journal of Hazardous Materials,
162(2-3): 1034 – 1040.
86.
Schramm, S., Léonço, D., Hubert, C., Tabet, J.-C., and
Bridoux, M. (2015). Development and validation of an isotope dilution
ultra-high performance liquid chromatography tandem mass spectrometry method
for the reliable quantification of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)
and 14 other explosives and their degradation products in environmental water
samples. Talanta, 143: 271 – 278.
87.
Meng, H. B., Wang, T. R., Guo, B. Y., Hashi, Y., Guo, C. X.
and Lin, J. M. (2008). Simultaneous determination of inorganic anions and
cations in explosive residues by ion chromatography. Talanta, 76(2): 241 – 245.
88.
Hargadon, K. A. and McCord, B. R. (1992). Explosive residue
analysis by capillary electrophoresis and ion chromatography. Journal of Chromatography A, 602(1–2):
241 – 247.
89.
Hopper, K. G., LeClair, H. and McCord, B. R. (2005). A novel
method for analysis of explosives residue by simultaneous detection of anions
and cations via capillary zone electrophoresis. Talanta, 67(2): 304 – 312.
90.
Cruces-Blanco, C., Gamiz-Gracia, L. and Garcia-Campana, A. M.
(2007). Applications of capillary electrophoresis in forensic analytical
chemistry. TrAC Trends in Analytical
Chemistry. 26(3): 215 – 226.
91.
Ahmad, U. K., Jamari, N. L. and Nagayah, S. (2012).
Simultaneous determination of inorganic ions in post-blast residues using
capillary electropheresis. Malaysian
Journal of Analytical Sciences. 12(1): 25 – 31.
92.
Pristera, F., Halik, M., Castelli, A. and Fredericks, W.
(1960). Analysis of explosives using infrared spectroscopy. Analytical Chemistry, 32(4): 495 – 508.
93.
Achuthan, C. P. and Jose, C. I. (1990). Studies on octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
(HMX) polymorphism. Propellants,
Explosives, Pyrotechnics. 15(6): 271 – 275.
94.
Primera-Pedrozo, O. M., Soto-Feliciano, Y. M.,
Pacheco-Londoño, L. C. and Hernández-Rivera, S. P. (2009). Detection of high
explosives using reflection absorption infrared spectroscopy with fiber coupled
grazing angle probe/FTIR. Sensing and
Imaging: An International Journal, 10(1-2): 1 – 13.
95.
Mantler, M. and Schreiner, M. (2011). X-ray analysis of
objects of art and archaeology. Journal
of Radioanalytical and Nuclear Chemistry, 247(3): 635 – 644.
96.
Sánchez Ramos, S., Bosch Reig, F., Gimeno Adelantado, J.,
Yusá Marco, D. and Doménech Carbó, A. (2014). Application of XRF, XRD, thermal
analysis, and voltammetric techniques to the study of ancient ceramics. Analytical and Bioanalytical Chemistry,
373(8): 893 – 900.
97.
Soldate, A. M. and Noyes, R. M. (1947). X-ray diffraction
patterns for the identification of crystalline constituents of explosives. Industrial and Engineering Chemistry,
19(7): 442 – 444.
98.
O'Flynn, D., Reid, C. B., Christodoulou, C., Wilson, M. D.,
Veale, M. C., Seller, P., Hills, D. Desai, H., Wong, B. and Speller, R. (2013).
Explosive detection using pixellated X-ray diffraction (PixD). Journal of
Instrumentation, 8(3): 1 – 15.
99.
Almog, J., Espino, D., Tamiri, T. and Sonenfeld, D. (2013).
Trace analysis of urea nitrate in post-blast debris by GC/MS. Forensic Science International,
224(1–3): 80 – 83.
100.
Banas, K., Banas, A., Moser, H. O., Bahou, M., Li, W., Yang,
P., Cholewa, M. and Lim, S. K. (2010). Multivariate analysis techniques in the
forensics investigation of the postblast residues by means of fourier
transform-infrared spectroscopy. Analytical Chemistry, 82(7): 3038 –
3044.
101.
Paull, B., C. Roux, M. Dawson, and P. Doble, (2004). Rapid
screening of selected organic explosives by high performance liquid
chromatography using reversed-phase monolithic columns. Journal of Forensic Sciences, 49(6): 1181 – 1186.
102.
Xu, X., Van De Craats, A. M., Kok, E. M. and De Bruyn, P. C.
A. M. (2004). Trace analysis of peroxide explosives by high performance liquid
chromatography-atmospheric pressure chemical ionization-tandem mass
spectrometry (HPLC-APCI-MS/MS) for forensic applications. Journal of Forensic Sciences, 49(6): 1230 – 1236.
103.
Oehrle, S. A., (1996). Analysis of nitramine and
nitroaromatic explosives by capillary electrophoresis. Journal of Chromatography A, 745(1-2): 233 – 237.
104.
Lang, G.-H. L. and Boyle, K. M. (2009). The analysis of black
powder substitutes containing ascorbic acid by ion chromatography/mass
spectrometry. Journal of Forensic
Sciences, 54(6): 1315 – 1322.
105.
Sun, J., Shu, X., Liu, Y., Zhang, H., Liu, X., Jiang, Y.,
Kang, B., Xue, C. and Song, G. (2011). Investigation on the thermal expansion
and theoretical density of 1,3,5‐trinitro‐1,3,5‐triazacyclohexane. Propellants, Explosives, Pyrotechnics, 36(4):
341 – 346.
106.
Koudryashov, V. I., Serebryakov, A. S. and Smirnov, V. V.
(2006). Investigation of possibility to detect the detonators of the explosive
devices by means of EC XRF approach, in detection and disposal of improvised
explosives, Schubert, H. and Kuznetsov, A. Editors, Springer Netherlands: pp. 223 – 226.
107.
Kleiböhmer, W., K. Cammann, J. Robert, and Mussenbrock, E.
(1993). Determination of explosives residues in soils by micellar
electrokinetic capillary chromatography and high-performance liquid
chromatography: A comparative study. Journal
of Chromatography A, 638(2): 349 – 356.
108.
Smedts, B. R., Baeyens, W. and De Bisschop, H. C. (2003).
Separation of arsines and trinitrotoluene by reversed phase high performance
liquid chromatography and micellar electrokinetic capillary chromatography. Analytica Chimica Acta, 495(1-2): 239 –
247.