Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 283 - 290

DOI: https://doi.org/10.17576/mjas-2017-2102-02

 

 

 

GLUCOSE PRODUCTION FROM STEAM-ALKALI-CHEMICAL

PRE-TREATED OIL PALM TRUNK BIOMASS VIA ENZYMATIC SACCHARIFICATION PROCESS

 

(Penghasilan Glukosa dari Pra-Rawatan Wap-Kimia-Alkali Biomas Batang Kelapa Sawit Melalui Proses Sakarifikasi Enzim)

 

Nurul Wahidah Mazlan, Long Wee Lai*, Nur Akmal Suliman, Marini Ibrahim, Rahmad Mohd Taib, Rozila Alias

 

Department of Science and Biotechnology,

Faculty of Engineering and Life Sciences,

Universiti Selangor, Jalan Timur Tambahan, 45600 Bestari Jaya, Selangor, Malaysia 

 

*Corresponding author: zki@unisel.edu.my

 

 

Received: 7 June 2016; Accepted: 1 February 2017

 

 

Abstract

This study proposed lignocellulosic oil palm trunk (OPT) biomass can be used as alternative substrate for glucose emanation via enzymatic saccharification route. The OPT biomass was pre-treated using steam-alkali-chemical (SAC) method prior to enzymatic saccharification process for glucose formation. Three basic physiochemical parameters such as enzyme concentration (20 – 100 FPU.mL-1), pH (4.0 – 8.0) and reaction temperature (30 – 60 °C) were intensively studied. Results revealed that all parameters gave significant effect on glucose production. By setting the enzyme hydrolysis conditions at pre-determined parameters points, i.e. enzyme concentration, 60 FPU.mL-1; pH, 6.0 and reaction temperature, 50 °C, respectively; 4.27 g.L-1 of glucose was attained at 72 hours hydrolysis. There is 4.49-fold of glucose increment in SAC-treated OPT substrate compared to untreated ones. This research also indicates enzyme digestibility can be enhanced by using treated OPT as substrate.

 

Keywords:  oil palm trunk biomass, steam-alkali-chemical pre-treatment, enzymatic saccharification, cellulase enzyme

 

Abstrak

Kajian ini mencadangkan lignoselulosa biomas batang kelapa sawit (OPT) boleh digunakan sebagai alternatif substrat bagi penghasilan glukosa melalui kaedah enzim sakarifikasi. Biomas OPT terlebih dahulu dirawat dengan wap-kimia-alkali (SAC) sebelum proses sakarifikasi enzimatik bagi pembentukan glukosa. Tiga fizikokimia parameter asas seperti kepekatan enzim (20 – 100 FPU.mL-1), pH (4.0 – 8.0) dan suhu tindak-balas (30 – 60 °C) telah dikaji secara intensif. Hasil kajian menunjukkan bahawa semua parameter memberi kesan ke atas pengeluaran glukosa. Dengan menetapkan syarat enzim hidrolisis pada parameter yang telah ditentukan, iaitu masing-masing; kepekatan enzim, 60 FPU.mL-1; pH, 6.0 dan suhu tindak-balas, 50 °C; 4.27 g.L-1 glukosa telah dicapai pada 72 jam hidrolisis. Glukosa meningkat sebanyak 4.49 kali ganda dalam SAC-rawatan OPT substrat berbanding yang tidak dirawat. Kajian ini juga membuktikan penghadaman enzim boleh dipertingkatkan dengan menggunakan OPT terawat sebagai substrat.

 

Kata kunci:  biomas batang kelapa sawit, pra-rawatan wap-kimia-alkali, sakarifikasi enzimatik, enzim selulase

 

References

1.         Liu, Y-Y., Xu, J-L., Zhang, Y., Liang, C-Y., He, M-C., Yuan, Z-H. and Xie, J. (2016). Reinforced alkali-pretreatment for enhancing enzymatic hydrolysis of sugarcane bagasse. Fuel Processing Technology, 143: 1 – 6.

2.         Pang, F., Xue, S., Yu, S., Zhang, C., Li, B. and Kang, Y. (2013). Effects of combination of steam explosion and microwave irradiation (Se–Mi) pretreatment on enzymatic hydrolysis, sugar yields and structural properties of corn stover. Industrial Crops Production, 42: 402 – 408.

3.         Noparat, P., Prasertsan, P., O-Thong, S. and Pan, X. (2015). Dilute acid pretreatment of oil palm trunk biomass at high temperature for enzymatic hydrolysis. Energy Procedia, 79: 924 – 929.

4.         Lai, L. W., Teo, C. L, Wahidin, S. and Annuar, M. S. M. (2014). Determination of enzyme kinetic parameters on sago starch hydrolysis by linearized graphical methods. Malaysian Journal of Analytical Sciences, 18(3): 527 – 533. 

5.         Ewanick, B. R. (2012). Hydrothermal pretreatment of lignocellulosic biomass, in: Keith, W. (eds.), Bioalcohol production: Biochemical conversion of lignocellulosic biomass, Woodhead, Washington. pp. 1 – 23.

6.         Lai, L. W., Teo, C. L. and Idris, A. (2013). Different pretreatment methods to evaluate lignin content in oil palm trunk. Proceeding of International Conference on Industrial Engineering and Management Science, Shanghai (China). DEStech Publication Inc., Lancaster. pp. 156 – 162.

7.         Lai, L-W. and Idris, A. (2013). Disruption of oil palm trunks and fronds by microwave-alkali pretreatment. Bioresources, 8(2): 2792 – 2804.

8.         Yuanisa, A, Ulum, K. and Wardani, A. K. (2015). Pretreatment of oil palm trunk lignocellulose as first step to produce second generation of bioethanol: A review. Jurnal Pangan Agroindustri, 3(4): 1620 – 1626. 

9.         Lai, L. W. and Idris, A. (2016). Comparison of steam-alkali-chemical and microwave-alkali pretreatment for enhancing the enzymatic saccharification of oil palm trunk. Renewable Energy, 99: 738 – 746.

10.      van Soest, P. J., Robertson, J. B. and Lewis, B. A. (1991).  Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583 –3597.

11.      Ghose, T. K. (1987). Measurement of cellulase activities. Pure Applied Chemistry, 59(2): 257 – 268. 

12.      Novo-Nordisk. (1999). Product sheet of celluclast 1.5 L. B153i-GB. pp.1 – 3.

13.      Lai, L. W., Yahya, S. S. M., Nor, N. M. and Sulong, M. R. (2016). Enzymatic saccharification on ammonia pretreated oil palm trunk biomass for glucose production: an optimization using response surface methodology. Malaysian Journal of Analytical Sciences, 20(1): 21 – 30.

14.      Wee, L. L., Annuar, M. S. M., Ibrahim, S. and Chisti, Y. (2011). Enzyme-mediated production of sugars from sago starch: Statistical process optimization. Chemical Engineering Communications, 198(11): 1339 – 1353.

15.      Ruiz, H. A., Vicente, A. A. and Teixeira, J. A. (2012). Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Industrial Crops Productions, 26(1): 100 107.

16.      Zhang, Z., O’Haraa, I. M. and Dohertyb, W. O. S. (2013). Effects of pH on pretreatment of sugarcane bagasse using aqueous imidazolium ionic liquids. Green Chemistry, 15(2): 431 438. 

17.      Tan, H. T., Lee, K. T. and Mohamed, A. R. (2011). Pretreatment of lignocellulosic palm biomass using a solvent–ionic liquid [BMIM]Cl for glucose recovery: an optimization study using response surface methodology. Carbohydrate Polymers, 83(4): 1862 – 1868.

18.      Shuler, M. L. and Kargi, F. (1992). Bioprocess Engineering: Basic Concepts, 2nd ed., Prentice Hall, New Jersey. pp. 57 – 104.

19.      Segel, I. H. (1976). Biochemical calculations: How to solve mathematic problem in general biochemistry, 2nd ed., John Wiley and Sons, United State. pp. 208 – 323. 

20.      Hamzah, F., Idris, A. and Tan, K. S. (2011). Preliminary study on enzymatic hydrolysis of treated oil palm empty fruits bunches (EFB) fibre by using combination of cellulase and β-1,4-glucosidase. Biomass Bioenergy, 35(3): 1055 – 1059.

21.      Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K. U., Sukumaran, R. K. and Pandey, A. (2012). Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy, 37(1): 109 116.

 




Previous                    Content                    Next