Malaysian Journal of Analytical Sciences Vol 21 No 2
(2017): 312 - 322
DOI:
https://doi.org/10.17576/mjas-2017-2102-06
GEOCHEMISTRY AND CLAY
MINERALS OF SURFACE SEDIMENTS OF SOUTHWESTERN JOHOR, MALAYSIA
(Geokimia dan
Mineral-mineral Liat Enapan Permukaan di Barat Daya Johor, Malaysia)
Hasrizal Shaari1,2*, Noor Azhar Mohd
Shazili2, Lina Idayu Abdullah1, Nor Antonina Abdullah1,
Mohd Lokman Husain1, Norhayati Md. Tahir1
1School of Marine and Environmental Science
2Institute of Oceanography and Environment
Universiti
Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
*Corresponding author: riz@umt.edu.my
Received: 19
December 2016; Accepted: 18 February 2017
Abstract
Surface
sediments from tropical coastal settings of Southwestern Johor, Malaysia, were
analyzed for grain size, major element content and clay minerals using particle
size analyzer, scanning electron microscope-energy dispersive spectrometer
(SEM-EDS) and X-ray Diffractometer (XRD). This work is aimed at investigating
the geochemical composition of surface sediments and possible anthropogenic
inputs from urban settlements. Sediment texture was found to be clayey with an
average of 45.15%. The abundance of major elements in decreasing order is SiO2 > Al2O3 > K2O ≥ ClO2 ≥ Na2O > MgO
> MnO > ZnO. The dominance of SiO2 appears to be linked with the
draining of Sungai Pulai to the study area. The concentration of ZnO registered
a hundred times higher than the average natural level of zinc in the earth's
crust. Higher levels of Zn might be derived from the combination of anthropogenic
input and natural geochemical processes. Mineral abundance follows the order of
quartz > kaolinite > muscovite > smectite > calcite> illite.
Smectite was detected in the upper river sediment, but was not present in the
estuarine sediment. This is likely due to the accumulation and intensity of
weathering products. The dominance of quartz in the coastal sediments is due to
the intense weathering process.
Keywords: tropical, sediments, elements, clay minerals,
Malaysia
Abstrak
Sedimen permukaan dari
pesisiran pantai tropika di Barat Daya Johor, Malaysia, telah dianalisis untuk
saiz butiran, kandungan unsur utama dan mineral liat dengan menggunakan penganalisa
saiz partikal, imbasan elektron mikroskop-spektrometer serakan tenaga (SEM-EDS) and
pembelauan sinaran-X (XRD). Kajian ini
bertujuan untuk mengkaji komposisi geokimia enapan permukaan dan input
antropogenik yang mungkin hadir dari penempatan bandar. Tekstur enapan adalah terdiri daripada liat dengan purata
pecahan saiz liat sebanyak 45.15%. Kelimpahan elemen utama secara tertib
menurun adalah seperti berikut SiO2 > Al2O3 >
K2O ≥ ClO2 ≥ Na2O > MgO > MnO > ZnO. Dominasi SiO2 membayangkan terdapat perkaitan dengan aliran Sungai Pulai ke kawasan
kajian. Kepekatan ZnO direkodkan beratus kali lebih tinggi daripada tahap
semula jadi purata zink di dalam kerak bumi. Tahap Zn yang lebih tinggi mungkin
diperolehi daripada gabungan input antropogenik dan proses geokimia semula
jadi. Kelimpahan mineral mengikuti urutan berikut kuarza> kaolinit> muskovit>
smektit> kalsit> ilit. Smektit dikesan pada enapan di bahagian hulu
sungai namun tiada di dalam enapan muara. Keadaan ini mungkin disebabkan oleh
pengumpulan dan keamatan produk luluhawa. Dominasi kuarza di dalam sedimen
pantai adalah disebabkan oleh proses luluhawa.
Kata kunci: tropika, enapan, elemen-elemen, mineral liat, Malaysia
References
1. Association of Southeast Asian National United States
Coastal Resources Management Project (ASEAN/US CRMP). (1991). The coastal
environmental profile of South Johore, Malaysia. ICLARM Technical Report 24: 1
– 65.
2. Abdullah, N. A., Shazili, N. A. M., Yaacob, R. and Kamaruzzaman, Y. (2014).
Grain size and metallic trace element contents in sediments of Kemaman
Coast, Terengganu, Malaysia, South China Sea. Journal of Earth Science and Engineering, 4: 80 – 87.
3. Kamaruzzaman,
Y., Mohd Yusuf, N., Shazili N. A. M. and Saad, S. (2011). Heavy metal
concentration in the surface sediment of Tanjung Lumpur mangrove forest,
Kuantan, Malaysia. Sains Malaysiana, 40(2): 89 – 92.
4. Pehlivanoglou, K.,
Trontsios, G. and Tsirambides, A. (2004). Grain size distribution, clay
mineralogy and chemistry of bottom sediments from the outer Thermaikos Gulf,
Aegean Sea, Greece. Mediterranean
Marine Science,
5
(1): 43 – 53.
5. Zhou, D., Yuan-Bo, L. and Cheng-Kui, Z. (1994). Oceanology of China Seas.
Springer-Science and Business Media, Dorrecht.
6. Yusoff, A. H., Zulkifli, S. Z., Ismail, A. and Mohamed, C. A. R. (2015). Vertical trend
of trace metals deposition in sediment core off Tanjung Pelepas Harbour,
Malaysia. Procedia Environmental Sciences,
30: 211 – 216.
7. Zulkifli, S. Z., Mohamat-Yusuff, F., Ismail, A., Aziz, A. Sabuti, A. A.
and Mohamed, C. A. R. (2015). Status of heavy metals in surface sediments of
the western part of the Johor Straits using a sediment quality guideline. World Journal of Fish and Marine Sciences, 7 (3): 214 –
220.
8. Guan, W. S., Ghaffar, M. A., Ali, M. M. and Cob, Z. C. (2014). The
Polychaeta (Annelida) communities of the Merambong and Tanjung Adang Shoals,
Malaysia, and its relationship with the environmental variables. Malayan Nature Journal, 66: 168 –
183.
9. Sabri, S., Said, M. I. M., Azman, S., Muda, K., Kassim, M. A. M. and
Salmiati (2012).
Copper in water, sediment and Strombus
Canarium at South Western Coast of Peninsular Malaysia. International Journal of Environmental Science
and Development, 3(3): 217 – 219.
10. Azlan, N. I. and Othman, R. (2009). Monitoring of mangrove area
using remote sensing toward shoreline protection. GIS Ostrava, 1: 25 – 28.
11. US Department of Agriculture (USDA). (1987). Agricultural resources:
Cropland, water and conservation situation and outlook report. AR-Econ. Res. Serv.
Washington, D.C.: pp. 439.
12. Abdullah,
N. A., Yaakob, R., Ahmad, S., Chung, M. K. and So, A. N. (2007). Major elements
and oxides of the South China Sea surface sediments off Johor Coasts. Journal of Sustainability Science and Management, 2(1):
79 – 85.
13. Abad, S. N. A.
K. S., Mohamad, E. T. and Komoo, I. (2014). Dominant weathering profiles of granite in Southern Peninsular Malaysia. Engineering Geology, 183: 208 – 215.
14.
Wayne, D. R, Fesha, I. G., Shaw, J.
N., Wood, C. W., Feng, Y., Norfleet, M. L. and Van Santen. E. (2002). Land
use effects on soil quality parameters for identical soil taxa. In Van Santen, E. (ed.) Southern Conservation Tillage
Conference for Sustainable Agriculture, Auburn, Alabama.
24-26 June 2002. Alabama Agricultural Experiment Station and Auburn University:
pp. 233 –
238.
15.
Wenk,
H-R. and Bulakh, A. (2004). Minerals their constitution and origin. Cambridge
University Press. pp. 635.
16.
Eberl, D. D. (1993). Three zones for illite
formation during burial diagenesis and metamorphism. Clays & Clay Minerals, 41: 26 – 37.
17. Battez,
H. A., Gonzalez, R., Viesca, J., Fernandez, J., Diazfernandez, J., MacHado, A.,
Chou, R. and Riba, J. (2008). CuO, ZrO2 and ZnO nanoparticles as
antiwear additive in oil lubricants. Wear, 265 (3–4): 422 – 428.
18. Hurst, A. (1999). Textural
and geochemical micro-analysis in the interpretation of clay mineral
characteristics: Lessons from sandstone hydrocarbon reservoirs. Clay Minerals, 34(1):137 – 149.
19. Singer, A.
(1984). The paleoclimatic interpretation of clay minerals in sediments - A
review. Earth-Science Review, 21: 251
– 293.
20. Rothwell, R. G. (1989).
Minerals and mineraloids in marine
sediments: An optical guide. Elsevier Applied Science, London: pp. 279.
21. Fanning D.S., Keramidas, V.Z
and El-Desoky, M.A. (1989). In: Minerals in soil environments, 2nd Edition:
pp. 551 – 634.
22. Tribble, J. S.
and Wilkens, R. H. (1999). Mineralogy and microfabric of sediment from the
Western Mediterranean Sea. Proceedings
of the Ocean Drilling Program, Scientific Results, 161: 99 – 110.
23. El-Attar, H. A.,
Jackson, M. L. and Volk, V.V. (1972). Fluorine loss from silicates on ignition.
American Mineralogist, 57: 246 – 452.