Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 312 - 322

DOI: https://doi.org/10.17576/mjas-2017-2102-06

 

 

 

GEOCHEMISTRY AND CLAY MINERALS OF SURFACE SEDIMENTS OF SOUTHWESTERN JOHOR, MALAYSIA

 

(Geokimia dan Mineral-mineral Liat Enapan Permukaan di Barat Daya Johor, Malaysia)

 

Hasrizal Shaari1,2*, Noor Azhar Mohd Shazili2, Lina Idayu Abdullah1, Nor Antonina Abdullah1,

Mohd Lokman Husain1, Norhayati Md. Tahir1

 

1School of Marine and Environmental Science

2Institute of Oceanography and Environment

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

 

*Corresponding author: riz@umt.edu.my

 

 

Received: 19 December 2016; Accepted: 18 February 2017

 

 

Abstract

Surface sediments from tropical coastal settings of Southwestern Johor, Malaysia, were analyzed for grain size, major element content and clay minerals using particle size analyzer, scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and X-ray Diffractometer (XRD). This work is aimed at investigating the geochemical composition of surface sediments and possible anthropogenic inputs from urban settlements. Sediment texture was found to be clayey with an average of 45.15%. The abundance of major elements in decreasing order is SiO2 > Al2O3 > K2O ≥ ClO2 ≥ Na2O > MgO > MnO > ZnO. The dominance of SiO2 appears to be linked with the draining of Sungai Pulai to the study area. The concentration of ZnO registered a hundred times higher than the average natural level of zinc in the earth's crust. Higher levels of Zn might be derived from the combination of anthropogenic input and natural geochemical processes. Mineral abundance follows the order of quartz > kaolinite > muscovite > smectite > calcite> illite. Smectite was detected in the upper river sediment, but was not present in the estuarine sediment. This is likely due to the accumulation and intensity of weathering products. The dominance of quartz in the coastal sediments is due to the intense weathering process.

 

Keywords:  tropical, sediments, elements, clay minerals, Malaysia

 

Abstrak

Sedimen permukaan dari pesisiran pantai tropika di Barat Daya Johor, Malaysia, telah dianalisis untuk saiz butiran, kandungan unsur utama dan mineral liat dengan menggunakan penganalisa saiz partikal, imbasan elektron mikroskop-spektrometer serakan tenaga (SEM-EDS) and pembelauan sinaran-X (XRD). Kajian ini bertujuan untuk mengkaji komposisi geokimia enapan permukaan dan input antropogenik yang mungkin hadir dari penempatan bandar. Tekstur enapan adalah terdiri daripada liat dengan purata pecahan saiz liat sebanyak 45.15%. Kelimpahan elemen utama secara tertib menurun adalah seperti berikut SiO2 > Al2O3 > K2O ≥ ClO2 ≥ Na2O > MgO > MnO > ZnO. Dominasi SiO2 membayangkan terdapat perkaitan dengan aliran Sungai Pulai ke kawasan kajian. Kepekatan ZnO direkodkan beratus kali lebih tinggi daripada tahap semula jadi purata zink di dalam kerak bumi. Tahap Zn yang lebih tinggi mungkin diperolehi daripada gabungan input antropogenik dan proses geokimia semula jadi. Kelimpahan mineral mengikuti urutan berikut kuarza> kaolinit> muskovit> smektit> kalsit> ilit. Smektit dikesan pada enapan di bahagian hulu sungai namun tiada di dalam enapan muara. Keadaan ini mungkin disebabkan oleh pengumpulan dan keamatan produk luluhawa. Dominasi kuarza di dalam sedimen pantai adalah disebabkan oleh proses luluhawa.

 

Kata kunci:  tropika, enapan, elemen-elemen, mineral liat, Malaysia

 

References

1.       Association of Southeast Asian National United States Coastal Resources Management Project (ASEAN/US CRMP). (1991). The coastal environmental profile of South Johore, Malaysia. ICLARM Technical Report 24: 1 – 65.

2.       Abdullah, N. A., Shazili, N. A. M., Yaacob, R. and Kamaruzzaman, Y. (2014). Grain size and metallic trace element contents in sediments of Kemaman Coast, Terengganu, Malaysia, South China Sea. Journal of Earth Science and Engineering, 4: 80 – 87.

3.       Kamaruzzaman, Y., Mohd Yusuf, N., Shazili N. A. M. and Saad, S. (2011). Heavy metal concentration in the surface sediment of Tanjung Lumpur mangrove forest, Kuantan, Malaysia. Sains Malaysiana, 40(2): 89 – 92.

4.       Pehlivanoglou, K., Trontsios, G. and Tsirambides, A. (2004). Grain size distribution, clay mineralogy and chemistry of bottom sediments from the outer Thermaikos Gulf, Aegean Sea, Greece. Mediterranean Marine Science, 5 (1): 43 – 53.

5.       Zhou, D., Yuan-Bo, L. and Cheng-Kui, Z. (1994). Oceanology of China Seas. Springer-Science and Business Media, Dorrecht.

6.       Yusoff, A. H., Zulkifli, S. Z., Ismail, A. and Mohamed, C. A. R. (2015). Vertical trend of trace metals deposition in sediment core off Tanjung Pelepas Harbour, Malaysia. Procedia Environmental Sciences, 30: 211 – 216.

7.       Zulkifli, S. Z., Mohamat-Yusuff, F., Ismail, A., Aziz, A. Sabuti, A. A. and Mohamed, C. A. R. (2015). Status of heavy metals in surface sediments of the western part of the Johor Straits using a sediment quality guideline. World Journal of Fish and Marine Sciences, 7 (3): 214 – 220.

8.       Guan, W. S., Ghaffar, M. A., Ali, M. M. and Cob, Z. C. (2014). The Polychaeta (Annelida) communities of the Merambong and Tanjung Adang Shoals, Malaysia, and its relationship with the environmental variables. Malayan Nature Journal, 66: 168 – 183. 

9.       Sabri, S., Said, M. I. M., Azman, S., Muda, K., Kassim, M. A. M. and Salmiati (2012). Copper in water, sediment and Strombus Canarium at South Western Coast of Peninsular Malaysia. International Journal of Environmental Science and Development, 3(3): 217 – 219.

10.    Azlan, N. I. and Othman, R. (2009). Monitoring of mangrove area using remote sensing toward shoreline protection. GIS Ostrava, 1: 25 – 28.

11.    US Department of Agriculture (USDA). (1987). Agricultural resources: Cropland, water and conservation situation and outlook report. AR-Econ. Res. Serv. Washington, D.C.: pp. 439.

12.    Abdullah, N. A., Yaakob, R., Ahmad, S., Chung, M. K. and So, A. N. (2007). Major elements and oxides of the South China Sea surface sediments off Johor Coasts. Journal of Sustainability Science and Management, 2(1): 79 – 85.

13.    Abad, S. N. A. K. S., Mohamad, E. T. and Komoo, I. (2014). Dominant weathering profiles of granite in Southern Peninsular Malaysia. Engineering Geology, 183: 208 – 215.

14.    Wayne, D. R, Fesha, I. G., Shaw, J. N., Wood, C. W., Feng, Y., Norfleet, M. L. and Van Santen. E. (2002). Land use effects on soil quality parameters for identical soil taxa. In Van Santen, E. (ed.) Southern Conservation Tillage Conference for Sustainable Agriculture, Auburn, Alabama. 24-26 June 2002. Alabama Agricultural Experiment Station and Auburn University: pp. 233 – 238. 

15.    Wenk, H-R. and Bulakh, A. (2004). Minerals their constitution and origin. Cambridge University Press. pp. 635.

16.    Eberl, D. D. (1993). Three zones for illite formation during burial diagenesis and metamorphism. Clays & Clay Minerals, 41: 26 37.

17.    Battez, H. A., Gonzalez, R., Viesca, J., Fernandez, J., Diazfernandez, J., MacHado, A., Chou, R. and Riba, J. (2008). CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265 (3–4): 422 – 428.

18.    Hurst, A. (1999). Textural and geochemical micro-analysis in the interpretation of clay mineral characteristics: Lessons from sandstone hydrocarbon reservoirs. Clay Minerals, 34(1):137 – 149.

19.    Singer, A. (1984). The paleoclimatic interpretation of clay minerals in sediments - A review. Earth-Science Review, 21: 251 – 293.

20.    Rothwell, R. G. (1989). Minerals and mineraloids in marine sediments: An optical guide. Elsevier Applied Science, London: pp. 279.

21.    Fanning D.S., Keramidas, V.Z and El-Desoky, M.A. (1989). In: Minerals in soil environments, 2nd Edition: pp. 551 – 634.

22.    Tribble, J. S. and Wilkens, R. H. (1999). Mineralogy and microfabric of sediment from the Western Mediterranean Sea. Proceedings of the Ocean Drilling Program, Scientific Results, 161: 99 – 110.

23.    El-Attar, H. A., Jackson, M. L. and Volk, V.V. (1972). Fluorine loss from silicates on ignition. American Mineralogist, 57: 246 – 452.

 




Previous                    Content                    Next