Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 633 - 642

DOI: https://doi.org/10.17576/mjas-2017-2103-13

 

 

 

EFFECT OF BORE FLUID COMPOSITION ON STRUCTURAL AND PERFORMANCE OF POLYPHENYLSULFONE HOLLOW FIBER MEMBRANE CONTACTOR FOR DEACDIFICATION OF CRUDE PALM OIL

 

(Kesan Komposisi Cecair Lubang pada Struktur dan Prestasi Membran Gentian Geronggang

Polifenilsulfona Membran Kontaktor untuk Penyahasidan Minyak Sawit Mentah)

 

Noor Hidayu Othman1,2, Ahmadilfitri Md Noor1, Mohd Suria Affandi Yusoff1, Pei Sean Goh2,

Ahmad Fauzi Ismail2, Woei Jye Lau2, Be Cheer Ng2, Norafiqah Ismail2

 

1Sime Darby R&D Centre Downstream,
42960 Pulau Carey, Selangor, Malaysia
2Advanced Membrane Technology Research Centre (AMTEC),
Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Takzim, Malaysia

*Corresponding author: noor.hidayu.othman@simedarby.com

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

The present work is aimed to study the influence of membrane internal structure on the extracting performance of hollow fiber membrane contactor system in removing free fatty acid (FFA) from crude palm oil (CPO). Polyphenylsulfone (PPSU) hollow fiber membrane were prepared via wet spinning method. Different bore fluid composition were employed mainly consisted of distilled water in combination with 0, 20, 30 and 40 wt.% N-methyl-2pyrrolidone (NMP). The resulting membranes structure were characterized for membrane morphology, membrane wettability and membrane pore size. The used of pure distilled water as membrane BF had created a large macrovoid structure with uniform and tiny finger-liked morphology at the outer membrane layer. Meanwhile, the present of NMP in BF composition had obviously changed the internal layer of 14PPSU membrane to more interconnected double-layers of finger-liked morphology. However, there are not much different in membrane wettability and pore size of 14PPSU membrane were recorded.  All PPSU hollow fiber membranes were further evaluated for deacidification performance through membrane contactor with sodium hydroxide (NaOH) as liquid extractant. 14PPSU-100:0 membrane contactor that prepared from100% distilled water as BF composition demonstrated the highest FFA removal of 16.54% without soap formation in oil permeate stream.

 

Keywords:  polyphenylsulfone, membrane contactor, sodium hydroxide, free fatty acids, crude palm oil

 

Abstrak

Hasil kerja ini bertujuan untuk mengkaji pengaruh struktur dalaman membran kepada prestasi pengekstrakan gentian geronggang membran kontaktor sistem dalam mengeluarkan asid lemak bebas (FFA) daripada minyak sawit mentah (MSM). Membran polifenilsulfona gentian geronggang telah disediakan melalui teknik fasa balikan basah. Komposisi cecair lubang yang berbeza telah digunakan dimana sebahagian besarnya terdiri daripada air suling dengan kombinasi 0, 20, 30 dan 40 wt.% berat N-metil-2pirolidon (NMP). Struktur membran yang dihasilkan telah diperincikan kepada morfologi membran, kebolehbasahan membran dan saiz liang membran. Penggunaan air suling tulen sebagai cecair lubang telah mewujudkan struktur ruang makro dengan morfologi seperti jejari kecil dan sekata pada lapisan luar membran. Sementara itu, kehadiran NMP dalam komposisi cecair lubang dengan jelas telah mengubah lapisan dalaman  membran 14PPSU untuk saling berhubung diantara dua lapisan morfologi jejari. Walau bagaimanapun, tiada perbezaan ketara pada kebasahan dan saiz liang membran 14PPSU telah direkodkan. Semua membran PPSU gentian geronggang telah dinilai pada prestasi penyahasidan melalui membran kontaktor bersama natrium hidroksida (NaOH) sebagai cecair pengekstrak. Membran 14PPSU-100:0 kontaktor yang dihasilkan daripada 100% air suling sebagai komposisi cecair lubang telah menunjukkan penyingkiran FFA tertinggi sebanyak 16.54% tanpa pembentukan sabun dalam aliran minyak.

 

Kata kunci:  polifenilsulfona, kontaktor membran, natrium hidroksida, asid lemak bebas, minyak sawit mentah

 

References

1.       Bhosle, B. and Subramanian, R. (2005). New approaches in deacidification of edible oils – A review. Journal of Food Engineering, (69): 481 – 494.

2.       Gibon, V., Greyt, W. and Kellens, M. (2007). Palm oil refining. European Journal of Lipid Science and Technology, (109): 315 – 335.

3.       Koseoglu, S. S and Engelgau, D. E. (1990). Membrane application and research in the edible oil industry: An assessment. Journal of the American Oil Chemists' Society, (67): 239 – 249.

4.       Cheryan, M. (2005). Membrane technology in the vegetable oil industry. Membrane Technology, (2): 5 – 7.

5.       Hwang, S. and Gabelman, A. (1999). Hollow fiber membrane contactors. Journal of Membrane Science, (159): 61 – 106.

6.       Decker, B., Hartmann, C.-T., Carver, P. I., Keinath, S. E. and Santurri, P. R. (2010).  Multilayer sulfonated polyhedral oligosilsesquioxane (S-POSS) sulfonated polyphenylsulfone (S-PPSU) composite proton exchange membranes. Chemistry of Materials, 22(3): 942 – 948.

7.       Jullok, N., Darvishmanesh, S., Luis, P. and Van der Bruggen, B. (2011). The potential of pervaporation for separation of acetic acid and water mixtures using polyphenylsulphone Membranes. Chemical Engineering Journal, 175: 306 – 315.

8.       Weng, T.-H. , Tseng, H.-H. and Wey, M.-Y. (2008). Preparation and characterisation of PPSU/PBNPI blend membrane for hydrogen separation. International Journal of Hydrogen Energy, 33(15): 4178 – 4182.

9.       Sani, N., Lau, W. and Ismail, A. F. (2015). Morphologies and separation characteristics of polyphenylsulfone-based solvent resistant nanofiltration membranes: Effect of polymer concentration in casting solution and membrane pretreatment condition. Korean Journal of Chemical Engineering, 32(4): 743 – 752.

10.    Scheirs, J. (2000). Compositional and failure analysis of polymers: A practical approach. John Wiley & Sons. England.

11.    Liu, Y., Koops, G. H. and Strathmann, H. (2003). Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution. Journal of Membrane Science, 223: 187 – 199.

12.    Dong, G., Li, H. and Chen, V. (2010). Factors affect defect-free matrimid hollow fiber gas separation performance in natural gas purification. Journal of Membrane Science, 353: 17 – 27.

13.    Feng, R. C., Wang, H. and Zhang, L. S. (2011). Diverse morphologies of PVDF hollow fiber membranes and their performance analysis as gas/liquid contactors. Journal of Applied Polymer Science, 119: 1259 – 1267.

14.    Rahbari-sisakht, M., Ismail, A. F. and Matsuura, T. (2012). Effect of bore fluid composition on structure and performance of asymmetric polysulfone hollow fiber membrane contactor for CO2 Absorption. Separation and Purification Technology, 88: 99 – 106.

15.    Yan, J. and Lau, W. (1998). Effect of internal coagulation morphology of polysulfone hollow fiber membranes. Separation and Science Technology, 33(1): 33 – 55.

 




Previous                    Content                    Next