Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 633 - 642
DOI:
https://doi.org/10.17576/mjas-2017-2103-13
EFFECT
OF BORE FLUID COMPOSITION ON STRUCTURAL AND PERFORMANCE OF POLYPHENYLSULFONE
HOLLOW FIBER MEMBRANE CONTACTOR FOR DEACDIFICATION OF CRUDE PALM OIL
(Kesan Komposisi
Cecair Lubang pada Struktur dan Prestasi Membran Gentian Geronggang
Polifenilsulfona
Membran Kontaktor untuk Penyahasidan Minyak Sawit Mentah)
Noor Hidayu
Othman1,2, Ahmadilfitri Md Noor1, Mohd Suria Affandi Yusoff1,
Pei Sean Goh2,
Ahmad Fauzi
Ismail2, Woei Jye Lau2, Be Cheer Ng2,
Norafiqah Ismail2
1Sime
Darby R&D Centre Downstream,
42960 Pulau Carey, Selangor, Malaysia
2Advanced
Membrane Technology Research Centre (AMTEC),
Universiti Teknologi Malaysia, 81310 UTM Skudai,
Johor Darul Takzim, Malaysia
*Corresponding author: noor.hidayu.othman@simedarby.com
Received:
26 August 2016; Accepted: 8 January 2017
Abstract
The
present work is aimed to study the influence of membrane internal structure on
the extracting performance of hollow fiber membrane contactor system in
removing free fatty acid (FFA) from crude palm oil (CPO). Polyphenylsulfone (PPSU) hollow
fiber membrane were prepared via wet spinning method. Different bore fluid
composition were employed mainly consisted of distilled water in combination
with 0, 20, 30 and 40 wt.% N-methyl-2pyrrolidone (NMP). The resulting membranes
structure were characterized for membrane morphology, membrane wettability and
membrane pore size. The used of pure distilled water as membrane BF had created
a large macrovoid structure with uniform and tiny finger-liked morphology at
the outer membrane layer. Meanwhile, the present of NMP in BF composition had
obviously changed the internal layer of 14PPSU membrane to more interconnected
double-layers of finger-liked morphology. However, there are not much different
in membrane wettability and pore size of 14PPSU membrane were recorded. All PPSU hollow fiber membranes were further
evaluated for deacidification performance through membrane contactor with
sodium hydroxide (NaOH) as liquid
extractant. 14PPSU-100:0 membrane contactor that prepared from100% distilled
water as BF composition demonstrated the highest FFA removal of 16.54% without
soap formation in oil permeate stream.
Keywords: polyphenylsulfone, membrane contactor, sodium
hydroxide, free fatty acids, crude palm oil
Abstrak
Hasil kerja ini bertujuan untuk mengkaji pengaruh struktur dalaman membran
kepada prestasi pengekstrakan gentian geronggang membran kontaktor sistem dalam
mengeluarkan asid lemak bebas (FFA) daripada minyak sawit mentah (MSM). Membran
polifenilsulfona gentian geronggang telah disediakan melalui teknik fasa balikan
basah. Komposisi cecair lubang yang berbeza telah digunakan dimana sebahagian
besarnya terdiri daripada air suling dengan kombinasi 0, 20, 30 dan 40 wt.%
berat N-metil-2pirolidon (NMP). Struktur membran yang dihasilkan telah
diperincikan kepada morfologi membran, kebolehbasahan membran dan saiz liang
membran. Penggunaan air suling tulen sebagai cecair lubang telah mewujudkan
struktur ruang makro dengan morfologi seperti jejari kecil dan sekata pada
lapisan luar membran. Sementara itu, kehadiran NMP dalam komposisi cecair
lubang dengan jelas telah mengubah lapisan dalaman membran 14PPSU untuk saling berhubung
diantara dua lapisan morfologi jejari. Walau bagaimanapun, tiada perbezaan
ketara pada kebasahan dan saiz liang membran 14PPSU telah direkodkan. Semua
membran PPSU gentian geronggang telah dinilai pada prestasi penyahasidan
melalui membran kontaktor bersama natrium hidroksida (NaOH) sebagai cecair
pengekstrak. Membran 14PPSU-100:0 kontaktor yang dihasilkan daripada 100% air
suling sebagai komposisi cecair lubang telah menunjukkan penyingkiran FFA
tertinggi sebanyak 16.54% tanpa pembentukan sabun dalam aliran minyak.
Kata kunci: polifenilsulfona, kontaktor membran, natrium hidroksida, asid lemak bebas,
minyak sawit mentah
References
1.
Bhosle, B. and Subramanian, R. (2005). New approaches in
deacidification of edible oils – A review. Journal of Food Engineering, (69):
481 – 494.
2.
Gibon,
V., Greyt, W. and Kellens, M. (2007). Palm oil refining. European Journal of
Lipid Science and Technology, (109): 315 – 335.
3.
Koseoglu, S. S and Engelgau, D. E. (1990). Membrane
application and research in the edible oil industry: An assessment. Journal
of the American Oil Chemists' Society, (67): 239 – 249.
4.
Cheryan, M. (2005). Membrane technology in the vegetable oil
industry. Membrane Technology, (2): 5 – 7.
5.
Hwang,
S. and Gabelman, A. (1999). Hollow fiber membrane contactors. Journal of
Membrane Science, (159): 61 – 106.
6.
Decker, B., Hartmann, C.-T., Carver, P. I., Keinath,
S. E. and Santurri, P. R. (2010).
Multilayer sulfonated polyhedral oligosilsesquioxane (S-POSS) sulfonated
polyphenylsulfone (S-PPSU) composite proton exchange membranes. Chemistry of Materials, 22(3): 942 – 948.
7.
Jullok, N., Darvishmanesh, S., Luis, P. and Van der Bruggen,
B. (2011). The potential of pervaporation for separation of acetic acid and
water mixtures using polyphenylsulphone Membranes. Chemical Engineering
Journal, 175: 306 – 315.
8.
Weng, T.-H. , Tseng, H.-H. and Wey, M.-Y. (2008).
Preparation and characterisation of PPSU/PBNPI blend membrane for hydrogen
separation. International Journal of Hydrogen Energy, 33(15): 4178 – 4182.
9.
Sani, N., Lau, W. and Ismail, A. F. (2015). Morphologies and
separation characteristics of polyphenylsulfone-based solvent resistant
nanofiltration membranes: Effect of polymer concentration in casting solution
and membrane pretreatment condition. Korean Journal of Chemical Engineering,
32(4): 743 – 752.
10.
Scheirs, J. (2000). Compositional
and failure analysis of polymers: A practical approach. John
Wiley & Sons. England.
11.
Liu, Y., Koops, G.
H. and Strathmann, H. (2003). Characterization of morphology controlled
polyethersulfone hollow fiber membranes by the addition of polyethylene glycol
to the dope and bore liquid solution. Journal of Membrane Science, 223:
187 – 199.
12.
Dong, G., Li, H.
and Chen, V. (2010). Factors affect defect-free matrimid hollow fiber gas
separation performance in natural gas purification. Journal of Membrane Science, 353: 17 – 27.
13.
Feng, R. C., Wang,
H. and Zhang, L. S. (2011). Diverse morphologies of PVDF hollow fiber membranes
and their performance analysis as gas/liquid contactors. Journal of Applied Polymer Science, 119: 1259 – 1267.
14.
Rahbari-sisakht, M., Ismail, A. F. and Matsuura, T. (2012).
Effect of bore fluid composition on structure and performance of asymmetric
polysulfone hollow fiber membrane contactor for CO2 Absorption. Separation
and Purification Technology, 88:
99 – 106.
15.
Yan, J. and Lau, W. (1998). Effect of internal coagulation
morphology of polysulfone hollow fiber membranes. Separation and Science
Technology, 33(1): 33 – 55.