Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 643 - 658

DOI: https://doi.org/10.17576/mjas-2017-2103-14

 

 

 

A REVIEW OF OILFIELD WASTEWATER TREATMENT USING MEMBRANE FILTRATION OVER CONVENTIONAL TECHNOLOGY

 

(Ulasan Mengenai Rawatan Sisa Medan Minyak Menggunakan Teknologi Membran Penapisan Berbanding Teknologi Konvensional)

 

Syarifah Nazirah Wan Ikhsan1,2, Norhaniza Yusof 1,2*, Farhana Aziz1,2, Nurasyikin Misdan3

 

1Advanced Membrane Technology Research Centre (AMTEC)

2Faculty of Chemical and Energy Engineering (FCEE)

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

3Faculty of Engineering Technology,

Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia

 

*Corresponding author: norhaniza@petroleum.utm.my

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

The oil and gas industry has been a constant developing industry as it is of importance to the maintenance of industrial civilization in its current configuration and play vital roles in many other industries. Some oil and gas industry operations have been accountable of water contamination through by-results of refining and oil slicks. One of the biggest by-products that have raised a critical environment concern is oilfield produced water. Oilfield produced water (OPW) is coproduced aqua liquid phase which originate from well alongside oil phases in normal production process. The content of OPW consists of different type of organic and inorganic mix. Discarding this kind of wastewater can lead to surface pollution especially on water sources as well as soil. Hence, to meet environmental regulations as well as reuse and recycling of produced water, many researchers have focused on treating oily saline produced water. Conventional technologies used to treat produced water consist of clarifiers, dissolved air flotation, hydro cyclones, and disposable filters/absorbers. Typically, additional chemicals for coagulation or settling are needed which are expensive and are incapable of achieving recently required standards of cleanliness. Therefore, researchers have swung to membrane filtration plans because of their capability to minimize extra expenses and surpass issues connected with current advances. Thus, the purpose of this review is to highlight the current and developed membrane technology used in treating the oilfield produced wastewater and its current progress.

 

Keywords:  oilfield produced water, membrane filtration, mixed matrix membrane, oily wastewater

 

Abstrak

Industri minyak dan gas telah menjadi industri membangun berterusan kerana ia adalah penting untuk mengekalkan tamadun perindustrian dalam konfigurasi semasa dan memainkan peranan penting dalam banyak industri lain. Sesetengah operasi industri minyak dan gas telah dipertanggungjawabkan ke atas pencemaran air melalui tindakan penapisan dan minyak tumpahan. Salah satu yang produk sampingan yang terbesar yang telah menimbulkan kebimbangan persekitaran kritikal adalah air yang dihasilkan medan minyak. Air yang dihasilkan dari medan minyak (OPW) adalah dihasilkan bersama fasa cecair dan fasa minyak yang berasal dari telaga minyak dalam proses pengeluaran normal. Kandungan OPW terdiri daripada pelbagai jenis campuran organik dan bukan organik. Pembuangan jenis air sisa ini boleh membawa kepada pencemaran permukaan terutamanya kepada sumber air dan tanah. Oleh itu, untuk memenuhi peraturan-peraturan alam sekitar serta penggunaan semula dan kitar semula air yang dihasilkan, ramai penyelidik telah memberi tumpuan kepada merawat air masin yang dihasilkan dari medan minyak ini. Teknologi konvensional yang digunakan untuk merawat air yang dihasilkan terdiri daripada clarifiers, pengapungan udara terlarut, siklon hidro dan penapis boleh guna/penyerap. Biasanya, bahan kimia tambahan untuk pembekuan atau pemendakan yang diperlukan yang agak mahal dan tidak mampu mencapai piawaian semasa kebersihan air. Oleh itu, penyelidik telah beralih kepada teknologi membran pemisahan kerana keupayaannya untuk mengurangkan perbelanjaan tambahan dan mengatasi isu-isu yang berkaitan dengan kemajuan semasa. Oleh itu, tujuan ulasan ini adalah untuk mengetengahkan teknologi membran semasa dan maju yang digunakan dalam merawat air sisa medan minyak yang dihasilkan dan kemajuan semasa teknologi ini.

 

Kata kunci:  sisa medan minyak, penapisan membran, membran matriks campuran, air sisa berminyak

 

References

1.       Ahmadun, F., Alireza P., Luqman C. A., Awang Biak, D. R., Madaenic S. S. and Zainal Abidin, Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170 (1-2): 530 – 551.

2.       Tellez, G. T., Nirmalakhandan, N. and Gardea-Torresdey, J. L. (2002).. Performance evaluation of an activated sludge system for emoving petroleum hydrocarbons from oilfield produced water. Advances in Environmental Research, 6(4): 455 – 470.

3.       Ferro, B. D. and Smith, M. (2016). Global onshore and offshore water production. http://www.touchoilandgas.com/global-onshore-offshore-water-a7137-. Accessed online 20 May 2016.

4.       Bjarne, N. (2003). Developments in membrane technology for water treatment. Desalination, 153: 355 – 360.

5.       Hayat, S., Iqbal A., Azam, Z. M., Ahmad, A., Inam, A. and Samiullah. (2002). Effect of long-term application of oil refinery wastewater on soil health with special reference to microbiological characteristics. Bioresource Technology, 84(2): 159 – 163.

6.       Jaramillo-Gutiérrez, M. I., Rivero, E. P., Cruz-Díaz, M. R., Nino-Gómez, M. E. and Pedraza-Avellaa, J. A. (2016). Photoelectrocatalytic hydrogen production from oilfield-produced wastewater in a filter-press reactor using TiO2-based photoanodes. Catalysis Today, 266: 17 – 26.

7.       Fakhru’l-Razi, A., Pendashteh A., Zainal Abidin, Z., Abdullah L. A., Awang Biak, D. R. and Madaeni, S. S. (2010) Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use. Bioresource Technology,  101(18): 6942 – 6949.

8.       Ebrahimi, M., Ashaghi, S., Engel, L., Willershausen, D., Mund, P., Bolduan, P. and Czermak, P. (2009). Characterization and application of different ceramic membranes for the oil-field produced water treatment. Desalination, 245(1-3): 533 – 540.

9.       Witze, A. (2015)., Race to unravel Oklahoma’s artificial quakes. Nature, 520(7548): 418 – 419.

10.    Gryta, M., Karakulski, K. and Morawski, A.W. (2001). Purification of oily wastewater by hybrid UF/MD. Water Resources, 53(15): 3665 – 3669.

11.    Saththasivam, J., Loganathan, K. and Sarp, S. (2016). An overview of oil-water separation using gas flotation systems. Chemosphere, 144: 671 – 680.

12.    Arnold, K. E. and Stewart, M. (2008). Surface production operations-design of oil handling systems and facilities. Gulf Publishing Co, Houston, Texas.

13.    Ran, J., Liu, J., Zhang, C., Wang, D. and Li, X. (2013). Experimental investigation and modeling of flotation column  for  treatment  of oily wastewater.  International Journal of Mining Science and Technology, 23(5): 665 – 668.

14.    Teh, C. Y., Yeong W. T. and Ching J. J. (2014). Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant. Industrial Crops and Products, 56: 17 – 26.

15.    Gregory, J., (2006). Particles in water: Properties and processes. London: IWA Pub: Boca Raton, CRC Press Taylor & Francis.

16.    Yang, C. L. (2007). Electrochemical coagulation for oily water demulsification. Separation and Purification Technology, 54(3): 388 – 395.

17.    Zhang, J., Sun, Y. X., Huang, Z. F., Liu, X. Q. and Meng, G. Y. (2006). Treatment of phosphate-containing oily wastewater by coagulation and microfiltration. Journal of Environmental Science, 18(4): 629 – 633.

18.    Sadhukhan, J., Lloyd, J. R., Scott, K., Premier, G. C., Yu, E. H., Curtis, T. and Head, I. M. (2016).  A critical review of  integration analysis  of  microbial  electrosynthesis  (Mes)  systems  with  waste  biorefineries for the production  of  biofuel  and  chemical  from  reuse of CO2. Renewable and Sustainable Energy Reviews, 56: 116 – 132.

19.    Cerqueira, V. S., Hollenbach, E. B., Maboni, F., Vainstein, M. H., Camargo, F. A., Do Carmo R. P. M. and Bento, F. M. (2011). Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresource Technology, 23: 11003 – 11010.

20.    Liu, G., Zhengfang, Y., Kun, T., and Zhang, Y. (2013). Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test. Biochemical Engineering Journal, 72: 48 – 53.

21.    Lu, M., Zhang, Z., Yu, W., and Wei, Z. (2009). Biological treatment of oilfield-produced water: A field pilot study. International Biodeterioration & Biodegradation, 63(3): 316 – 321.

22.    Weller, S. and Steiner, W. A. (1950). Engineering aspect of separation gases: Fractional permeation. Chemical Engineering Progression, 46: 585 – 590.

23.    Alzahrani, S. and Mohammad, A. W. (2014). Challenges and trends in membrane technology implementation for produced water treatment : A review. Journal of Water Process Engineering, 4: 107 – 133.

24.    Sonune, A. and Ghate, R. (2004) Developments in wastewater treatment methods. Desalination, 167: 55 – 63.

25.    Macedonio, F., Ali, A., Poerio, T., El-Sayed, E., Drioli, E. and Abdel-Jawad, M. (2014). Direct contact membrane distillation for treatment of oilfield produced water. Separation and Purification Technology, 126: 69 – 81.

26.    Baker, R. W. (2000). Membrane technology and applications. John Wiley & Sons Ltd, California.

27.    White, L. S., Wang, I. F. and Minhas, B. S. (1993). Polymide membranes for separation of solvents from lube oil, US Patent 5,364,166.

28.    Buffle, J., Wilkinson K. J., Stoll, S., Filella, M. and Zhang, J., (1998). A generalized description of aquatic colloidal interactions: The three colloidal component approach. Environmental Science Technology, 32(19): 2887 – 2889.

29.    Yu, S. L., Lu, Y., Chai, B. X. and Liu, J. H., (2006). Treatment of oily wastewater by organic-inorganic composite tubular ultrafiltration (UF) membranes. Desalination, 196(1-3): 76 – 83.

30.    Zhang, Y., Cui, P., Du, T., Shan, L. and Wang, Y. (2009). Development of a sulfated Y-doped nonstoichiometric zirconia/polysulfone composite membrane for treatment of wastewater containing oil. Separation and Purification Technology, 70(2): 153 – 159.

31.    Salahi, A., Noshadi, I., Badrnezhad, R., Kanjilal, B. and Mohammadi, T. (2013). Nano-porous membrane process for oily wastewater treatment: optimization using response surface methodology. Journal of Environmental Chemical Engineering, 1(3): 218 – 225.

32.    Huang, X., Wang, W., Liu, Y., Wang, H., Zhang, Z., Fan, W. (2015). Treatment of oily wastewater by PVP grafted PVTF ultrafiltration membranes. Chemical Engineering Journal, 273: 421 – 429.

33.    Bernardo, P. and Drioli E. (2010). Membrane technology: Latest application in refinery and petrochemical field. Comprehensive Membrane Science and Engineering, 1: 211 – 239.

34.    Kiss, Z. L, Laszlo, T., Zita, S., Sandor, B., Cecilia, H. and Zsuzsanna, L. (2013). Treatment of model oily waste water by microfiltration. Periodica Polytechnica Chemical Engineering, 57(1-2): 21 – 24.

35.    Shokrkar, H., Salahi, A., Kasiri, N. and Mohammadi, T. (2012). Prediction of permeation flux decline during MF  of  oily  wastewater  using  genetic  programming.  Chemical Engineering Research and Design, 90(6): 856 – 853.

36.    Wang, Y., Xu, C., Zhang, J., Yin, J. and Wang, H. (2009). Investigation of microfiltration for treatment of emulsified oily wastewater from the processing of petroleum products. Desalination, 249(3): 1223 – 1227.

37.    Zhang, H., Zhong, Z. and Xing, W. (2013). Application of ceramic membranes in the treatment of oilfield-produced water:effects of polyacrylamide and inorganic salts. Desalination, 309: 84 – 90.

38.    Juang, R. S. and Jiang, J. D. (1994). Application of batch ultrafiltration to the separation of W/O emulsions in liquid surfactant membrane processes. Journal of Membrane Science, 96(3): 193 – 203.

39.    Khulbe, K. C, Feng, C. Y. and Matsuura, T., (2008). Synthetic polymeric membrane. Springer-Verlag Berlin Heidelberg, Ottawa.

40.    Abdullah, N., Gohari, R. J., Yusof, N., Ismail, A. F., Jaafar, J. and Lau, W. J. (2016). Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead(II) from aqueous solution. Chemical Engineering Journal, 289: 28 – 37.

41.    Luo, L., Gang H., Chung, T, Weber, M., Staudt, C. and Maletzko, C. (2015). Oil/water separation via ultrafiltration by novel triangle-shape tri-bore hollow fibre membranes from sulfonated polyphenylenesulfone. Journal of Membrane Science, 476: 162 – 170.

42.    Al-Jeshi, S. and Anne N. (2008). An experimental evaluation of reverse osmosis membrane performance in oily water. Desalination, 228(1-3): 287 - 294.

43.    Ren, J. and Rong, W. (2011). Preparation of polymeric membranes. Handbook of Environmental Engineering, 13: 47 - 100.

44.    Solanki, S. J. and Desai, R. N. (2013) Polymer membrane technology. International Journal of Engineering Science and Innovative Technology, 2(2): 400 - 403.

45.    Xu, P., and Drewes, J. E. (2006). Viability of nanofiltration and ultra-low pressure reverse osmosis membranes for multi-beneficial use of methane produced water. Separation and Purification Technology, 52(1): 67 - 76.

46.    Mondal, S. and Wickramasinghe, S. R. (2008). Produced water treatment by nanofiltration and reverse osmosis membranes. Journal of Membrane Science, 322(1): 162 - 170.

47.    Qiao, X., Zhang, Z., Yu, J. and Ye, X. (2008). Performance characteristics of a hybrid membrane pilot-scale plant for oilfield-produced wastewater. Desalination, 225(1-3): 113 – 122.

48.    Li, L. and Lee, R. (2009). Purification of produced water by ceramic membranes: material screening, process design and economics. Separation Science and Technology, 44(15): 3455 - 3484.

49.    Weschenfelder, S. E., Louvisse, A. M. T., Borges, C. P., Meabe, E., Izquierdo, J. and Campos, J. C.  (2015). Evaluation of ceramic membranes for oilfield produced water treatment aiming reinjection in offshore units. Journal of Petroleum Science and Engineering, 131: 51 - 57.

50.    Abadi, H., S. R., Sebzari, M. R., Hemati, M., Rekabdar, F. and Mohammadi, T. (2011). Ceramic membrane performance in microfiltration of oily wastewater. Desalination, 265(1): 222 - 228.

51.    Rahman, M. M. and Muhammad, H. A. (2006). Performance of a crossflow membrane bioreactor (cf-mbr) when  treating  refinery  wastewater.  International  Congress on Membranes and Membranes Processes, 191(1-3): 16 - 26.

52.    DeFriend, K. A. , Wiesner, M. R., and Barron A. R. (2003). Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. Journal of Membrane Science, 224(1-2): 11 - 28.

53.    Pendergast, M. T. M. and Hoek, E. M. V (2011). A review of water treatment membrane technologies. Energy and Environmental Science, 4: 1946 - 1971.

54.    Munirasu, S., Abu Haija, M. and Banat, F. (2016). Use of membrane technology for oilfield and refinery produced water treatment - A review. Process Safety and Environmental Protection, 100: 183 - 2002.

55.    Field, R. (2010). Fundamentals of fouling. Membranes for Water Treatment, 4: 1 - 23.

56.    Scott, K. (1995). Handbook of industrial membranes. Elsevier, New York.

57.    Cicek, N., Dionysiou, D., Suidan, M. T., Ginestet, P., and Audic, J. M. (1999). Performance deterioration and structural changes of a ceramic membrane bioreactor due to inorganic abrasion. Journal of Membrane Science, 163(1): 19 - 28.

58.    Hua, F. L, Tsang, Y. F, Wang, Y. J, Chan, S. Y., Chua, H. and Sin, S. N. (2007). Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chemical Engineering Journal, 128(2-3): 169 - 175.

59.    Muric, A., Petrinic, I. and Christensen, M. L. (2014). Comparison of ceramic and polymeric ultrafiltration membranes  for  treating  wastewater  from  metalworking  industry.  Chemical  Engineering  Journal,  255: 403 - 410.

60.    Nandi, B. K, Moparthi, A., Uppaluri, R. and Purkait, M. K. (2010). Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models. Chemical Engineering Research and Design, 88(7): 881 - 892.

 




Previous                    Content                    Next