Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 643 - 658
DOI:
https://doi.org/10.17576/mjas-2017-2103-14
A
REVIEW OF OILFIELD WASTEWATER TREATMENT USING MEMBRANE FILTRATION OVER
CONVENTIONAL TECHNOLOGY
(Ulasan Mengenai
Rawatan Sisa Medan Minyak Menggunakan Teknologi Membran Penapisan Berbanding
Teknologi Konvensional)
Syarifah Nazirah
Wan Ikhsan1,2, Norhaniza Yusof 1,2*, Farhana Aziz1,2,
Nurasyikin Misdan3
1Advanced Membrane Technology Research Centre (AMTEC)
2Faculty of Chemical and Energy Engineering (FCEE)
Universiti
Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
3Faculty of Engineering Technology,
Universiti
Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
*Corresponding author: norhaniza@petroleum.utm.my
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
The oil and gas industry has been a
constant developing industry as it is of importance to the maintenance of
industrial civilization in its current configuration and play vital roles in
many other industries. Some oil and gas industry operations have been
accountable of water contamination through by-results of refining and oil
slicks. One of the biggest by-products that have raised a critical environment
concern is oilfield produced water. Oilfield produced water (OPW) is coproduced
aqua liquid phase which originate from well alongside oil phases in normal
production process. The content of OPW consists of different type of organic
and inorganic mix. Discarding this kind of wastewater can lead to surface
pollution especially on water sources as well as soil. Hence, to meet
environmental regulations as well as reuse and recycling of produced water,
many researchers have focused on treating oily saline produced water.
Conventional technologies used to treat produced water consist of clarifiers,
dissolved air flotation, hydro cyclones, and disposable filters/absorbers.
Typically, additional chemicals for coagulation or settling are needed which
are expensive and are incapable of achieving recently required standards of
cleanliness. Therefore, researchers have swung to membrane filtration plans
because of their capability to minimize extra expenses and surpass issues
connected with current advances. Thus, the purpose of this review is to
highlight the current and developed membrane technology used in treating the
oilfield produced wastewater and its current progress.
Keywords: oilfield produced water, membrane filtration,
mixed matrix membrane, oily wastewater
Abstrak
Industri minyak dan gas
telah menjadi industri membangun berterusan kerana ia adalah penting untuk
mengekalkan tamadun perindustrian dalam konfigurasi semasa dan memainkan
peranan penting dalam banyak industri lain. Sesetengah operasi industri minyak
dan gas telah dipertanggungjawabkan ke atas pencemaran air melalui tindakan
penapisan dan minyak tumpahan. Salah satu yang produk sampingan yang terbesar yang
telah menimbulkan kebimbangan persekitaran kritikal adalah air yang dihasilkan
medan minyak. Air yang dihasilkan dari medan minyak (OPW) adalah dihasilkan
bersama fasa cecair dan fasa minyak yang berasal dari telaga minyak dalam
proses pengeluaran normal. Kandungan OPW terdiri daripada pelbagai jenis
campuran organik dan bukan organik. Pembuangan jenis air sisa ini boleh membawa
kepada pencemaran permukaan terutamanya kepada sumber air dan tanah. Oleh itu,
untuk memenuhi peraturan-peraturan alam sekitar serta penggunaan semula dan
kitar semula air yang dihasilkan, ramai penyelidik telah memberi tumpuan kepada
merawat air masin yang dihasilkan dari medan minyak ini. Teknologi konvensional
yang digunakan untuk merawat air yang dihasilkan terdiri daripada clarifiers,
pengapungan udara terlarut, siklon hidro dan penapis boleh guna/penyerap.
Biasanya, bahan kimia tambahan untuk pembekuan atau pemendakan yang diperlukan
yang agak mahal dan tidak mampu mencapai piawaian semasa kebersihan air. Oleh itu,
penyelidik telah beralih kepada teknologi membran pemisahan kerana keupayaannya
untuk mengurangkan perbelanjaan tambahan dan mengatasi isu-isu yang berkaitan
dengan kemajuan semasa. Oleh itu, tujuan ulasan ini adalah untuk mengetengahkan
teknologi membran semasa dan maju yang digunakan dalam merawat air sisa medan
minyak yang dihasilkan dan kemajuan semasa teknologi ini.
Kata kunci: sisa medan minyak, penapisan membran, membran matriks campuran, air sisa
berminyak
References
1.
Ahmadun, F., Alireza P., Luqman C. A., Awang Biak, D. R.,
Madaenic S. S. and Zainal Abidin, Z. (2009). Review of technologies for oil and
gas produced water treatment. Journal of Hazardous Materials, 170 (1-2):
530 – 551.
2.
Tellez, G. T., Nirmalakhandan, N. and Gardea-Torresdey, J.
L. (2002).. Performance evaluation of an activated sludge system for emoving
petroleum hydrocarbons from oilfield produced water. Advances in
Environmental Research, 6(4): 455 – 470.
3.
Ferro, B. D. and Smith, M. (2016). Global onshore and
offshore water production. http://www.touchoilandgas.com/global-onshore-offshore-water-a7137-.
Accessed online 20 May 2016.
4.
Bjarne, N. (2003). Developments in membrane technology for
water treatment. Desalination, 153: 355 – 360.
5.
Hayat, S., Iqbal A., Azam, Z. M., Ahmad, A., Inam, A. and
Samiullah. (2002). Effect of long-term application of oil refinery wastewater
on soil health with special reference to microbiological characteristics. Bioresource
Technology, 84(2): 159 – 163.
6.
Jaramillo-Gutiérrez,
M. I., Rivero, E. P., Cruz-Díaz, M. R., Nino-Gómez, M. E. and Pedraza-Avellaa,
J. A. (2016). Photoelectrocatalytic hydrogen production from
oilfield-produced wastewater in a filter-press reactor using TiO2-based
photoanodes. Catalysis Today, 266: 17 – 26.
7.
Fakhru’l-Razi, A., Pendashteh A., Zainal Abidin, Z.,
Abdullah L. A., Awang Biak, D. R. and Madaeni, S. S. (2010) Application of
membrane-coupled sequencing batch reactor for oilfield produced water recycle
and beneficial re-use. Bioresource Technology, 101(18): 6942 – 6949.
8.
Ebrahimi, M., Ashaghi, S., Engel, L., Willershausen, D.,
Mund, P., Bolduan, P. and Czermak, P. (2009). Characterization and application
of different ceramic membranes for the oil-field produced water treatment. Desalination,
245(1-3): 533 – 540.
9.
Witze, A. (2015)., Race to unravel Oklahoma’s artificial
quakes. Nature, 520(7548): 418 – 419.
10.
Gryta, M., Karakulski, K. and Morawski, A.W. (2001). Purification
of oily wastewater by hybrid UF/MD. Water Resources, 53(15): 3665 – 3669.
11.
Saththasivam, J., Loganathan, K. and Sarp, S. (2016). An overview
of oil-water separation using gas flotation systems. Chemosphere, 144:
671 – 680.
12.
Arnold, K. E. and Stewart, M. (2008). Surface production
operations-design of oil handling systems and facilities. Gulf Publishing Co,
Houston, Texas.
13.
Ran, J., Liu, J., Zhang, C., Wang, D. and Li, X. (2013). Experimental
investigation and modeling of flotation column for treatment of oily wastewater. International Journal of Mining Science
and Technology, 23(5): 665 – 668.
14.
Teh, C. Y., Yeong W. T. and Ching J. J. (2014). Optimization
of agro-industrial wastewater treatment using unmodified rice starch as a
natural coagulant. Industrial Crops and Products, 56: 17 – 26.
15.
Gregory, J., (2006). Particles in water: Properties and processes.
London: IWA Pub: Boca Raton, CRC Press Taylor & Francis.
16.
Yang, C. L. (2007). Electrochemical coagulation for oily
water demulsification. Separation and Purification Technology, 54(3):
388 – 395.
17.
Zhang, J., Sun, Y. X., Huang, Z. F., Liu, X. Q. and Meng, G.
Y. (2006). Treatment of phosphate-containing oily wastewater by coagulation
and microfiltration. Journal of Environmental Science, 18(4): 629 – 633.
18.
Sadhukhan, J., Lloyd, J. R., Scott, K., Premier, G. C., Yu,
E. H., Curtis, T. and Head, I. M. (2016).
A critical review of integration
analysis of microbial electrosynthesis (Mes) systems
with waste biorefineries
for the production of biofuel and chemical from reuse
of CO2. Renewable and Sustainable Energy Reviews, 56: 116 – 132.
19.
Cerqueira, V. S., Hollenbach,
E. B., Maboni, F., Vainstein, M. H., Camargo, F. A., Do Carmo R. P. M. and Bento,
F. M. (2011). Biodegradation potential of oily sludge by pure and
mixed bacterial cultures. Bioresource Technology, 23: 11003 – 11010.
20.
Liu, G., Zhengfang, Y., Kun, T., and Zhang, Y. (2013).
Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge
blanket and immobilized biological aerated filter in a pilot-scale test. Biochemical
Engineering Journal, 72: 48 – 53.
21.
Lu, M., Zhang, Z., Yu, W., and Wei, Z. (2009). Biological treatment
of oilfield-produced water: A field pilot study. International
Biodeterioration & Biodegradation, 63(3): 316 – 321.
22.
Weller, S. and Steiner, W. A. (1950). Engineering aspect of
separation gases: Fractional permeation. Chemical Engineering Progression,
46: 585 – 590.
23.
Alzahrani, S. and Mohammad, A. W. (2014). Challenges and
trends in membrane technology implementation for produced water treatment : A
review. Journal of Water Process Engineering, 4: 107 – 133.
24.
Sonune, A. and Ghate, R. (2004) Developments in wastewater
treatment methods. Desalination, 167: 55 – 63.
25.
Macedonio, F., Ali, A., Poerio, T., El-Sayed, E., Drioli, E.
and Abdel-Jawad, M. (2014). Direct contact membrane distillation for treatment
of oilfield produced water. Separation and Purification Technology, 126:
69 – 81.
26.
Baker, R. W. (2000). Membrane technology and applications. John
Wiley & Sons Ltd, California.
27.
White, L. S., Wang, I. F. and Minhas, B. S. (1993). Polymide
membranes for separation of solvents from lube oil, US Patent 5,364,166.
28.
Buffle, J., Wilkinson K. J., Stoll, S., Filella, M. and
Zhang, J., (1998). A generalized description of aquatic colloidal
interactions: The three colloidal component approach. Environmental Science Technology, 32(19): 2887 – 2889.
29.
Yu, S. L., Lu, Y., Chai, B. X. and Liu, J. H., (2006). Treatment
of oily wastewater by organic-inorganic composite tubular ultrafiltration (UF)
membranes. Desalination, 196(1-3):
76 – 83.
30.
Zhang, Y., Cui, P., Du, T., Shan, L. and Wang, Y. (2009). Development
of a sulfated Y-doped nonstoichiometric zirconia/polysulfone composite
membrane for treatment of wastewater containing oil. Separation and Purification Technology, 70(2): 153 – 159.
31.
Salahi, A., Noshadi, I., Badrnezhad, R., Kanjilal, B. and
Mohammadi, T. (2013). Nano-porous membrane process for oily wastewater
treatment: optimization using response surface methodology.
Journal of Environmental Chemical Engineering, 1(3): 218 – 225.
32.
Huang, X., Wang, W., Liu, Y., Wang, H., Zhang, Z., Fan, W.
(2015). Treatment of oily wastewater by PVP grafted PVTF ultrafiltration membranes.
Chemical Engineering Journal, 273:
421 – 429.
33.
Bernardo, P. and Drioli E. (2010). Membrane technology:
Latest application in refinery and petrochemical field. Comprehensive
Membrane Science and Engineering, 1: 211 – 239.
34.
Kiss, Z. L, Laszlo, T., Zita, S., Sandor, B., Cecilia, H.
and Zsuzsanna, L. (2013). Treatment of model oily waste water by
microfiltration. Periodica Polytechnica Chemical Engineering, 57(1-2):
21 – 24.
35.
Shokrkar, H., Salahi, A., Kasiri, N. and Mohammadi, T.
(2012). Prediction of permeation flux decline during MF of oily
wastewater using genetic
programming. Chemical Engineering Research and Design,
90(6): 856 – 853.
36.
Wang, Y., Xu, C., Zhang, J., Yin, J. and Wang, H. (2009).
Investigation of microfiltration for treatment of emulsified oily wastewater
from the processing of petroleum products. Desalination, 249(3): 1223 –
1227.
37.
Zhang, H., Zhong, Z. and Xing, W. (2013). Application of
ceramic membranes in the treatment of oilfield-produced water:effects of
polyacrylamide and inorganic salts. Desalination, 309: 84 – 90.
38.
Juang, R. S. and Jiang, J. D. (1994). Application of batch
ultrafiltration to the separation of W/O emulsions in liquid surfactant
membrane processes. Journal of Membrane Science, 96(3): 193 – 203.
39.
Khulbe, K. C, Feng, C. Y. and Matsuura, T., (2008). Synthetic
polymeric membrane. Springer-Verlag Berlin Heidelberg, Ottawa.
40.
Abdullah, N., Gohari, R. J., Yusof, N., Ismail, A. F.,
Jaafar, J. and Lau, W. J. (2016). Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation,
characterization and its adsorptive removal of lead(II) from aqueous solution. Chemical Engineering Journal, 289: 28 – 37.
41.
Luo, L., Gang H., Chung, T, Weber, M., Staudt, C. and
Maletzko, C. (2015). Oil/water separation via ultrafiltration by novel
triangle-shape tri-bore hollow fibre membranes from sulfonated
polyphenylenesulfone. Journal of Membrane Science, 476: 162 – 170.
42.
Al-Jeshi, S. and Anne N. (2008). An experimental evaluation
of reverse osmosis membrane performance in oily water. Desalination,
228(1-3): 287 - 294.
43.
Ren, J. and Rong, W. (2011). Preparation of polymeric
membranes. Handbook of Environmental Engineering, 13: 47 - 100.
44.
Solanki, S. J. and Desai, R. N. (2013) Polymer membrane
technology. International Journal of Engineering Science and Innovative
Technology, 2(2): 400 - 403.
45.
Xu, P., and Drewes, J. E. (2006). Viability of
nanofiltration and ultra-low pressure reverse osmosis membranes for
multi-beneficial use of methane produced water. Separation and Purification
Technology, 52(1): 67 - 76.
46.
Mondal, S. and Wickramasinghe, S. R. (2008). Produced water
treatment by nanofiltration and reverse osmosis membranes. Journal of
Membrane Science, 322(1): 162 - 170.
47.
Qiao, X., Zhang, Z., Yu, J. and Ye, X. (2008). Performance characteristics
of a hybrid membrane pilot-scale plant for oilfield-produced wastewater. Desalination,
225(1-3): 113 – 122.
48.
Li, L. and Lee, R. (2009). Purification of produced water by
ceramic membranes: material screening, process design and economics. Separation
Science and Technology, 44(15): 3455 - 3484.
49.
Weschenfelder, S. E., Louvisse, A. M. T., Borges, C. P.,
Meabe, E., Izquierdo, J. and Campos, J. C. (2015). Evaluation of ceramic membranes for
oilfield produced water treatment aiming reinjection in offshore units. Journal
of Petroleum Science and Engineering, 131: 51 - 57.
50.
Abadi,
H., S. R., Sebzari, M. R., Hemati, M., Rekabdar, F. and Mohammadi, T. (2011).
Ceramic membrane performance in microfiltration of oily wastewater. Desalination,
265(1): 222 - 228.
51.
Rahman, M. M. and Muhammad, H. A. (2006). Performance of a
crossflow membrane bioreactor (cf-mbr) when treating refinery wastewater. International Congress on Membranes and Membranes
Processes, 191(1-3): 16 - 26.
52.
DeFriend, K. A. , Wiesner, M. R., and Barron A. R. (2003). Alumina
and aluminate ultrafiltration membranes derived from alumina nanoparticles. Journal
of Membrane Science, 224(1-2): 11 - 28.
53.
Pendergast, M. T. M. and Hoek, E. M. V (2011). A review of
water treatment membrane technologies. Energy and Environmental Science,
4: 1946 - 1971.
54.
Munirasu, S., Abu Haija, M. and Banat, F. (2016). Use of
membrane technology for oilfield and refinery produced water treatment - A
review. Process Safety and
Environmental Protection, 100: 183 - 2002.
55.
Field, R. (2010). Fundamentals of fouling. Membranes for
Water Treatment, 4: 1 - 23.
56.
Scott, K. (1995). Handbook of industrial membranes.
Elsevier, New York.
57.
Cicek, N., Dionysiou, D., Suidan, M. T., Ginestet, P., and
Audic, J. M. (1999). Performance deterioration and structural changes of a
ceramic membrane bioreactor due to inorganic abrasion. Journal of Membrane
Science, 163(1): 19 - 28.
58.
Hua, F. L, Tsang, Y. F, Wang, Y. J, Chan, S. Y., Chua, H.
and Sin, S. N. (2007). Performance study of ceramic microfiltration membrane
for oily wastewater treatment. Chemical Engineering Journal, 128(2-3):
169 - 175.
59.
Muric, A., Petrinic, I. and Christensen, M. L. (2014). Comparison
of ceramic and polymeric ultrafiltration membranes for treating
wastewater from metalworking industry. Chemical Engineering Journal, 255: 403 - 410.
60.
Nandi, B. K, Moparthi, A., Uppaluri, R. and Purkait, M. K.
(2010). Treatment of oily wastewater using low cost ceramic membrane:
comparative assessment of pore blocking and artificial neural network models. Chemical
Engineering Research and Design, 88(7): 881 - 892.