Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 669 - 674

DOI: https://doi.org/10.17576/mjas-2017-2103-16

 

 

 

PRELIMINARY STUDIES ON POWER GENERATION BY Bacilli E1 USING DUAL CHAMBER MICROBIAL FUEL CELL

 

 (Kajian Awal Penghasilan Elektrik oleh Basilli El Menggunakan Sel Bahan Api Mikroorganisma Dwi-kebuk)

 

Nazlee Faisal Ghazali1*, Nik Azmi Nik Mahmood1, Kamarul Asri Ibrahim2, Amir Asyraf Nasaruddin1

 

1Department of Bioprocess and Polymer Engineering

2Department of Chemical Engineering

Faculty of Chemical and Energy Engineering,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

 

*Corresponding author: nazlee@utm.my

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

Microbial fuel cell (MFC) is a developed technology to utilize microbial degradation ability and turned the degradation products to electricity. One of the limiting factor that contributes to the performance level of MFC is the microorganism used in the MFC. In the present research, Bacilli E1 has been tested for its ability to utilize glucose and converted it to electricity in dual chamber MFC. The MFC operated using E1 produced a maximum average of open circuit voltage (OCV) of 0.8 V.  Meanwhile, by inserting a 1000 Ω resistance in the MFC circuit, produced a stable voltage of 0.1 V and calculated current and power were 0.2 ± 0.017 mA and 0.1 Wm-2 Comparison of glucose based voltage production between individual and mixed culture shows similar pattern of voltage profile and since individual CC did not show any significant increase of OCV, it was concluded that Bacilli E1 plays major role in the present MFC for power production.

 

Keywords:  microbial fuel cell, bacilli, glucose

 

Abstrak

Sel bahan api berasaskan mikrob (MFC) adalah satu teknologi terbangun yang menggunakan keupayaan mikroorganisma mendegradasi dan menukarkan produk degradasi kepada elektrik. Antara yang menjadi faktor penghad yang menyumbangkan kepada tingkat prestasi MFC adalah mikroorganisma yang digunakan di dalam MFC. Dalam kajian ini, Bacilli E1 telah diuji keupayaannya untuk menggunakan glukosa dan menukarkannya kepada elektrik dalam dwikebuk MFC. MFC yang dijalankan dengan menggunakan E1, telah menghasilkan voltan litar terbuka (OCV) sebanyak 0.8 V. Manakala, dengan memasukkan rintangan sebanyak 1000 Ohm dalam litar MFC menghasilkan voltan yang stabil berjumlah 0.1 V serta jumlah arus dan kuasa yang dikira adalah masing-masing 0.2 ± 0.017 mA dan 0.1 Wm-2. Perbandingan antara penghasilan voltan daripada glukosa menggunakan individu dan kultur campuran adalah hampir serupa dan memandangkan CC secara individu tidak menunjukkan sebarang kenaikan dalam OCV, maka kesimpulan dibuat bahawa Bacilli E1 memainkan peranan besar dalam MFC yang dijalankan untuk penghasilan kuasa..

 

Kata kunci:  sel bahan api berasaskan mikrob, bacilli, glukosa

 

References

1.       Lovely, D. R. (2006). Microbial energizers: Fuel cells that keep on going. Microbe, 1(7): 323 – 329.

2.       Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Review Microbiology, 7: 375 – 381.

3.       Poddar, S. and Khurana, S. (2011) Geobacter: The electric microbe! efficient microbial fuel cells to generate clean, cheap electricity. Indian Journal of Microbiology, 51(2): 240 – 241.

4.       Yi, H., Nevin, K. P., Kim, B. C., Franks, A. E., Klimes, A., Tender, L. M. and Lovley, D. R. (2009). Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors and Bioelectronics, 24(12): 3498 – 3503.

5.       Zain, S.M., Rosiani, N.S., Hashim, Anuar, N., Suja, F., Daud, W. R. W. and Basri, N. E. A. (2011) Microbial fuel cells using mixed cultures of wastewater for electricity generation. Sains Malaysiana, 40(9): 993 – 997.

6.       Ren, Z., Ward, T. E., and Regan, J. M. (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environmental Science and Technology, 41: 4781 – 4786.

7.       Mesran, H., Mamat, S., Pang, Y. R., Hong, T. Y., Muneera, Z, Ali, M. A, Ghazali, N. F. M. and Mahmood, N. A. N. (2014). Preliminary studies on immobilized cell-based microbial fuel cell system on its power generation performance. Journal of Asian Scientific Research, 4(8): 428 – 435.

8.       Mohan, S. V., Raghavulu, S. V. and Sarma, P. N. (2008). Influence of anode biofilm growth on bioelectricity production in a single chambered mediatorless microbial fuel cell using anaerobic consortia. Biosensor and Bioelectronics, 24: 41 – 47.

9.       Franks, A. E, Malvankar, N. and Nevin, K. P. (2010). Bacterial biofilms: The powerhouse of a microbial fuel cell. Biofuels, 1(4): 589 – 604.

10.    Kiely, P. D., Call, D. F., Yates, M. D., Regan, J. M. and Logan, B. E. (2010). Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Applied Microbiol and Biotechnology, 88: 371 – 380.

11.    Semenec, L. and Franks, A. E. (2015). Delving through electrogenic biofilms: From anodes to cathodes to microbes. AIMS Bioengineering, 2(3): 222 – 248.

12.    Logan, B. E., Hmelers, B., Rozendal, R. A., Schroeder, U., Keller, J., Freguia, S., Aelterman, P., Verstratete, W. and Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40 (17): 5181 – 5192.

13.    Harnisch, F. and Schrçder, U. (2009). Selectivity versus mobility: Separation of anode and cathode in microbial bioelectrochemical systems. ChemSusChem, 2: 921 – 926.

14.    Vazquez-Larios, A. L., Solorza-Feria, O., Vazquez-Huerta, G., Rios-Leal, E., Rinderknecht-Seijas, N. and Poggi-Varaldo, H. M. (2011). Internal resistance and performance of microbial fuel cells: influence of cell configuration and temperature. Journal of New Materials for Electrochemical Systems, 14(2), 99-105.

15.    Thurston, C. F., Bennetto, H. P., Delaney, G. M., Delaney, G., Mason, J. R., Roller, S. D. and Stirling, J. L. (1985). Glucose metabolism in a microbial fuel cell. stoichiometry of product formation in a thionine-mediated proteus vulgaris fuel cell and its relation to coulombic yields. Journal of General Microbiology, 131: 1393 – 1401.

16.    Zhang, P. Y. and Liu, Z. L. (2010). Experimental study of the microbial fuel cell internal resistance. Journal of Power Sources, 195(24): 8013 – 8018.

17.    Jafary, T., Ghoreyshi, A. A., Najafpour, G. D., Fatemi, S. and Rahimnejad, M. (2013). Investigation on performance of microbial fuel cells based on carbon sources and kinetic models. International Journal of Energy Research, 37: 1539 – 1549.

18.    Ghoreyshi, A. A., Jafary, T., Najafpour, G. D. and Haghparast, F. (2011) Effect of type and concentration of substrate on power generation in a dual chambered microbial fuel cell. World Renewable Energy Congress 2011. Lingkoping, Sweden: pp. 1174 – 1181.

19.    Rabaey, K., Lissens, G., Siciliano, S. D. and Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 25: 1531 – 1535.

 




Previous                    Content                    Next