Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 669 - 674
DOI:
https://doi.org/10.17576/mjas-2017-2103-16
PRELIMINARY STUDIES ON POWER GENERATION BY Bacilli E1 USING DUAL CHAMBER MICROBIAL
FUEL CELL
(Kajian Awal
Penghasilan Elektrik oleh Basilli El
Menggunakan Sel Bahan Api Mikroorganisma Dwi-kebuk)
Nazlee Faisal
Ghazali1*, Nik Azmi Nik Mahmood1, Kamarul Asri Ibrahim2,
Amir Asyraf Nasaruddin1
1Department of Bioprocess and Polymer Engineering
2Department of Chemical Engineering
Faculty
of Chemical and Energy Engineering,
Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
*Corresponding author: nazlee@utm.my
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
Microbial fuel cell (MFC) is a developed technology to utilize
microbial degradation ability and turned the degradation products to
electricity. One of the limiting factor that contributes to the performance
level of MFC is the microorganism used in the MFC. In the present research, Bacilli E1 has been tested for its
ability to utilize glucose and converted it to electricity in dual chamber MFC.
The MFC operated using E1 produced a maximum average of open circuit voltage
(OCV) of 0.8 V. Meanwhile, by inserting a
1000 Ω resistance in the MFC circuit, produced a stable voltage of 0.1 V and
calculated current and power were 0.2 ± 0.017 mA and 0.1 Wm-2
Comparison of glucose based voltage production between individual and mixed
culture shows similar pattern of voltage profile and since individual CC did
not show any significant increase of OCV, it was concluded that Bacilli E1 plays major role in the
present MFC for power production.
Keywords:
microbial
fuel cell, bacilli, glucose
Abstrak
Sel bahan api berasaskan mikrob (MFC) adalah satu teknologi terbangun yang
menggunakan keupayaan mikroorganisma mendegradasi dan menukarkan produk degradasi
kepada elektrik. Antara yang menjadi faktor penghad yang menyumbangkan kepada
tingkat prestasi MFC adalah mikroorganisma yang digunakan di dalam MFC. Dalam
kajian ini, Bacilli E1 telah diuji
keupayaannya untuk menggunakan glukosa dan menukarkannya kepada elektrik dalam
dwikebuk MFC. MFC yang dijalankan dengan menggunakan E1, telah menghasilkan
voltan litar terbuka (OCV) sebanyak 0.8 V. Manakala, dengan memasukkan
rintangan sebanyak 1000 Ohm dalam litar MFC menghasilkan voltan yang stabil
berjumlah 0.1 V serta jumlah arus dan kuasa yang dikira adalah masing-masing
0.2 ± 0.017 mA dan 0.1 Wm-2. Perbandingan antara penghasilan voltan
daripada glukosa menggunakan individu dan kultur campuran adalah hampir serupa
dan memandangkan CC secara individu tidak menunjukkan sebarang kenaikan dalam
OCV, maka kesimpulan dibuat bahawa Bacilli
E1 memainkan peranan besar dalam MFC yang dijalankan untuk penghasilan
kuasa..
Kata kunci: sel bahan api berasaskan mikrob, bacilli, glukosa
References
1.
Lovely,
D. R. (2006). Microbial energizers: Fuel cells that keep on going. Microbe, 1(7): 323 – 329.
2.
Logan,
B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Review Microbiology, 7: 375 – 381.
3.
Poddar,
S. and Khurana, S. (2011) Geobacter: The electric microbe! efficient microbial
fuel cells to generate clean, cheap electricity. Indian Journal of Microbiology, 51(2): 240 – 241.
4.
Yi,
H., Nevin, K. P., Kim, B. C., Franks, A. E., Klimes, A., Tender, L. M. and
Lovley, D. R. (2009). Selection of a variant of Geobacter sulfurreducens with
enhanced capacity for current production in microbial fuel cells. Biosensors and Bioelectronics, 24(12):
3498 – 3503.
5.
Zain,
S.M., Rosiani, N.S., Hashim, Anuar, N., Suja, F., Daud, W. R. W. and Basri, N.
E. A. (2011) Microbial fuel cells using mixed cultures of wastewater for
electricity generation. Sains Malaysiana,
40(9): 993 – 997.
6.
Ren,
Z., Ward, T. E., and Regan, J. M. (2007) Electricity production from cellulose
in a microbial fuel cell using a defined binary culture. Environmental Science and Technology, 41: 4781 – 4786.
7.
Mesran,
H., Mamat, S., Pang, Y. R., Hong, T. Y., Muneera, Z, Ali, M. A, Ghazali, N. F.
M. and Mahmood, N. A. N. (2014). Preliminary studies on immobilized cell-based
microbial fuel cell system on its power generation performance. Journal of Asian
Scientific Research,
4(8): 428 – 435.
8.
Mohan,
S. V., Raghavulu, S. V. and Sarma, P. N. (2008). Influence of anode biofilm
growth on bioelectricity production in a single chambered mediatorless
microbial fuel cell using anaerobic consortia. Biosensor and Bioelectronics, 24: 41 – 47.
9.
Franks,
A. E, Malvankar, N. and Nevin, K. P. (2010). Bacterial biofilms: The powerhouse
of a microbial fuel cell. Biofuels, 1(4):
589 – 604.
10.
Kiely,
P. D., Call, D. F., Yates, M. D., Regan, J. M. and Logan, B. E. (2010). Anodic
biofilms in microbial fuel cells harbor low numbers of higher-power-producing
bacteria than abundant genera. Applied
Microbiol and Biotechnology, 88: 371 – 380.
11.
Semenec,
L. and Franks, A. E. (2015). Delving through electrogenic biofilms: From anodes
to cathodes to microbes. AIMS
Bioengineering, 2(3): 222 – 248.
12.
Logan,
B. E., Hmelers, B., Rozendal, R. A., Schroeder, U., Keller, J., Freguia, S., Aelterman,
P., Verstratete, W. and Rabaey, K. (2006). Microbial fuel cells: Methodology and
technology. Environmental Science and
Technology, 40 (17): 5181 – 5192.
13.
Harnisch,
F. and Schrçder, U. (2009). Selectivity versus mobility: Separation of anode
and cathode in microbial bioelectrochemical systems. ChemSusChem, 2: 921 – 926.
14.
Vazquez-Larios,
A. L., Solorza-Feria, O., Vazquez-Huerta, G., Rios-Leal, E., Rinderknecht-Seijas,
N. and Poggi-Varaldo, H. M. (2011). Internal resistance and performance of
microbial fuel cells: influence of cell configuration and temperature. Journal of New Materials for Electrochemical
Systems, 14(2), 99-105.
15.
Thurston,
C. F., Bennetto, H. P., Delaney, G. M., Delaney, G., Mason, J. R., Roller, S.
D. and Stirling, J. L. (1985). Glucose metabolism in a microbial fuel cell.
stoichiometry of product formation in a thionine-mediated proteus vulgaris fuel
cell and its relation to coulombic yields. Journal
of General Microbiology, 131: 1393 – 1401.
16.
Zhang,
P. Y. and Liu, Z. L. (2010). Experimental study of the microbial fuel cell
internal resistance. Journal of Power
Sources, 195(24): 8013 – 8018.
17.
Jafary,
T., Ghoreyshi, A. A., Najafpour, G. D., Fatemi, S. and Rahimnejad, M. (2013). Investigation
on performance of microbial fuel cells based on carbon sources and kinetic
models. International Journal of Energy
Research, 37: 1539 – 1549.
18.
Ghoreyshi,
A. A., Jafary, T., Najafpour, G. D. and Haghparast, F. (2011) Effect of type
and concentration of substrate on power generation in a dual chambered
microbial fuel cell. World Renewable Energy Congress 2011. Lingkoping, Sweden:
pp. 1174 – 1181.
19.
Rabaey,
K., Lissens, G., Siciliano, S. D. and Verstraete, W. (2003). A microbial fuel
cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 25: 1531 – 1535.