Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 675 - 689
DOI:
https://doi.org/10.17576/mjas-2017-2103-17
CORRELATION BETWEEN
PROTON CONDUCTIVITY, HYDROPHILICITY, AND
THERMAL STABILITY OF
CHITOSAN/MONTMORILLONITE COMPOSITE
MEMBRANE MODIFIED GPTMS AND
THEIR PERFORMANCE IN DIRECT METHANOL FUEL CELL
(Hubungan antara Kekonduksian Proton, Sifat Hidrofil dan Kestabilan
Termal atas Membran Komposit Kitosan/Montmorillonit dengan Modifikasi GPTMS dan Prestasinya dalam Sel Bahan Api Metanol Langsung)
Mochammad Purwanto1,2, Lukman Atmaja2*, M.T. Salleh1,
Mohamad Azuwa
Mohamed1, Juhana Jaafar1, Ahmad Fauzi
Ismail1, Mardi Santoso2, Nurul Widiastuti2
1Advanced
Membrane Technology (AMTEC) Research Centre,
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,
Malaysia
2Department of Chemistry,
Institut Teknologi Sepuluh Nopember,
ITS Sukolilo, Surabaya 60111, Indonesia
*Corresponding author: lukman_at@chem.its.ac.id
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
Chitosan
based inorganic hybrid membrane is a promising organic–inorganic hybrids for
the development of high performance proton exchange membrane (PEM). The immobilization
of modified montmorillonite (MMT) using GPTMS within chitosan matrix would
possess superior physicochemical characteristics due to more hydrogen bonding
formation introduced by GPTMS. Therefore, higher
number hydrogen bond formation can be expected in Ch/MMT-GPTMS membrane rather
than in pure Ch membrane. A fully hydrated membrane at elevated temperatures is
desirable for efficient proton conduction in the membranes. It
remains a critical challenge to maintain proper hydration of the membranes for
the operation of the direct methanol fuel cell (DMFC). The microstructure obtained by SEM for composites showed
that filler was successfully incorporated and relatively well dispersed in the
chitosan polymer matrix. The role of surface modification of MMT filler by GPTMS have increase the functional group that can form
hydrogen bonding which suitable for interaction with water. High water
uptake is favourable for high performance PEM to facilitate great numbers of
protons hopping and diffusion through the membrane. In addition,
greater hydrogen bonding formation would lead to the tighter packing of
composite membrane, resulting in higher bonding strength and higher thermal
resistance. The Ch/MMT-GPTMS composite membrane with 5 wt% filler
loading exhibited the best proton conductivity are 4.66 mScm-1, with
water contact angle value
of 64.73o. A maximum power density of
0.24 mWcm-2 was obtained with a 2M methanol feed. The relationship
of water contact angle, water upake, membrane swelling, thermal stability, and
proton conductivity shown suitable trend, it means that all quality of them are
related to the hydrophilicity properties.
Keywords: chitosan, montmorillonite, (3-glycidoxypropyl) trimethoxysilane, direct methanol fuel cel
Abstrak
Kitosan berasaskan membran hibrid tak organik ialah kacukan
organik-tak organik yang menjanjikan pembangunan pertukaran proton membran
berprestasi tinggi (PEM). Montmorillonit (MMT) pegun diubahsuai menggunakan
GPTMS dalam matriks kitosan akan mempunyai ciri-ciri fiziko-kimia unggul kerana
lebih pembentukan ikatan hidrogen yang diperkenalkan oleh GPTMS. Oleh itu,
pembentukan jumlah ikatan hidrogen yang lebih tinggi boleh dijangka pada
membran Ch/MMT-GPTMS bukannya pada membran Ch tulen. Setiap membran terhidrat
sepenuhnya pada suhu tinggi adalah diperlukan untuk pengaliran proton cekap
dalam membran. Ia kekal sebagai cabaran kritikal untuk mengekalkan penghidratan
membran untuk operasi sel bahan api metanol langsung (DMFC). Mikrostruktur
diperolehi melalui SEM untuk komposit menunjukkan bahawa pengisi telah berjaya
digabungkan dan tersebar di dalam matriks polimer kitosan. Peranan
pengubahsuaian permukaan MMT pengisi oleh GPTMS telah meningkatkan kumpulan
berfungsi yang boleh membentuk ikatan hidrogen yang sesuai untuk berinteraksi
dengan air. Pengambilan air yang tinggi adalah baik untuk PEM yang berprestasi
tinggi bagi membantu proton bergerak dan penyebaran melalui membran. Di samping
itu, pembentukan ikatan hidrogen yang lebih besar akan membawa kepada
pembungkusan membran komposit yang lebih ketat, menyebabkan kekuatan ikatan dan
rintangan haba yang lebih tinggi. Membran komposit Ch/MMT-GPTMS dengan 5% berat
pengisi mewujudkan kekonduksian proton terbaik iaitu 4.66 mScm-1,
dengan nilai sudut sentuhan air ialah 64.73o. Ketumpatan kuasa
maksimum ialah 0.24 mWcm-2 telah diperolehi dengan suapan 2M metanol.
Hubungan sudut sentuhan air, serapan air, pengembangan membran, kestabilan
haba, dan kekonduksian proton menunjukkan corak yang sesuai, ia bermaksud semua
kualiti yang terhasil adalah berkaitan sifat hidrofilik.
Kata kunci: kitosan, montmorillonit,
(3-glisidoksipropil) trimetoksisilana, sel bahan api metanol langsung
References
1.
Yuan, T., Pu, L., Huang, Q., Zhang, H., Li, X. and Yang H. Yang. (2014). An effective
methanol-blocking membrane modified with graphene oxide nanosheets for passive
direct methanol fuel cells. Electrochimica Acta, 117: 393 – 397.
2.
Sadrabadi,
M. M. H., Dashtimoghadam, E., Majedi, F. S., Kabiri, K., Solati-Hashjin,
M. and Moaddel, H. (2010). Novel nanocomposite proton exchange membranes based on Nafion and AMPS-modified
montmorillonite for fuel cell applications. Journal of Membrane Science, 365(1–2): 286 –293.
3.
Cui, Z., Xing, W., Liu, C., Liao, J. and Zhang, H. (2009). Chitosan/heteropolyacid composite membranes for direct methanol fuel cell. Journal of Power Sources, 188(1): 24 – 29.
4.
Jung, D. H., Cho, S. Y., Peck, D. H., Shin, D. R. and Kim, J. S. (2003). Preparation and performance of a Nafion/montmorillonite nanocomposite
membrane for direct methanol fuel cell. Journal of Power Sources. 118(1-2): 205 – 211.
5.
Lu, J. L., Fang, Q. H., Li, S. L. and Jiang, S. P. (2013). A novel phosphotungstic acid
impregnated meso-Nafion multilayer membrane for proton exchange membrane fuel
cells. Journal of Membrane Science, 427: 101 – 107.
6.
Lufrano, F., Baglio, V., Staiti,
P., Antonucci, V., and Arico, A. S. (2013). Performance
analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power
Sources, 243: 519 –534.
7.
Wang J. and Wang, L. (2014). Preparation and properties of organic-inorganic alkaline hybrid membranes
for direct methanol fuel cell application. Solid State Ionics, 255: 96 – 103.
8.
Younes,
I., Ghorbel-Bellaaj, O., Nasri, R., Chaabouni, M., Rinaudo, M.
and Nasri, M. (2012). Chitin and chitosan preparation from shrimp shells using optimized
enzymatic deproteinization. Process Biochemistry, 47(12): 2032 – 2039.
9.
Sagheer,
F. A., Al-Sughayer, M. A., Muslim, S. and Elsabee, M. Z. (2009). Extraction and characterization of chitin and chitosan from marine sources
in Arabian Gulf. Carbohydrate Polymer, 77(2): 410 – 419.
10.
Chatterjee,
S., Adhya, M., Guha, A. K. and Chatterjee, B. P. (2005). Chitosan from Mucor rouxii: production and physico-chemical
characterization. Process Biochemistry, 40(1): 395 – 400.
11.
Krishna Rao,
K. S. V., Ramasubba Reddy, P., Lee, Y.-I, and Kim, C. (2012). Synthesis and
characterization of chitosan–PEG–Ag nanocomposites for antimicrobial
application. Carbohydrate Polymer, 87(1): 920 – 925.
12.
Croisier,
F. and Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49(4):
780 –792.
13.
Bhattacharyya,
R. and Ray, S. K. (2014). Micro- and nano-sized bentonite filled composite
superabsorbents of chitosan and acrylic copolymer for removal of synthetic dyes
from water. Applied Clay Science, 101: 510 – 520.
14.
Lewandowska,
K., Sionkowska, A., Kaczmarek, B. and Furtos, G. (2014). Characterization of chitosan composites with various clays. International Journal of Biological
Macromolecules, 65: 534 – 541.
15.
Liu, Y., Yang, S. and Niu, W. (2013). Simple, rapid and green one-step strategy to synthesis of
graphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for
square-wave voltammetric detection of methyl parathion. Colloids Surface B: Biointerfaces. 108: 266 – 270.
16.
Olad, A. and Farshi Azhar, F. (2014). The synergetic effect of bioactive ceramic and nanoclay on
the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold
for bone tissue engineering. Ceramic International, 40(7): 10061 – 10072.
17.
El Ichi, S.,
Zebda, A., Alcaraz, J. P., Laaroussi, A., Boucher, F., Boutonnat,
J., Reverdy-Bruas, N., Chaussy, D., Belgacem,
M. N., Cinquin, P. and Martin, D. K. (2015). Bioelectrodes modified with chitosan for long-term energy
supply from the body. Energy and Environmental Science, 8(3): 1017 –1026.
18.
Sabaa,
M. W., Abdallah, H. M., Mohamed, N. A. and Mohamed, R. R. (2015). Synthesis, characterization and application of biodegradable crosslinked
carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites. Materials
Science and Engineering C, 56: 363 – 373.
19.
Petersson,
L., Kvien, I. and Oksman, K. (2007). Structure and thermal properties of poly(lactic
acid)/cellulose whiskers nanocomposite materials. Composite Science Technology, 67(11–12): 2535 –2544.
20.
Mohamed,
M. A., Salleh, W. N. W., Jaafar, J., Ismail, A. F., Mutalib, M. A, Sani,
N. A. A., Asri, S. E. A. M. and Ong, C. S. (2016). Physicochemical characteristic of regenerated
cellulose/N-doped TiO2 nanocomposite membrane fabricated from
recycled newspaper with photocatalytic activity under UV and visible light
irradiation. Chemical Engineering
Journal, 284: 202 – 215.
21.
Grigoriadi,
K., Giannakas, A., Ladavos, A. K. and Barkoula, N. M. (2015). Interplay between processing and performance in chitosan-based clay nanocomposite
films. Polymer Bulletin, 72(5): 1145 – 1161.
22.
Huang,
Y., Huang, J., Cai, J., Lin, W., Lin, Q., Wu, F. and Luo, J. (2015). Carboxymethyl chitosan/clay nanocomposites and their copper complexes:
Fabrication and property. Carbohydrate Polymer, 134: 390 – 397.
23.
Hong, S. I., Lee, J. H., Bae, H. J., Koo, S. Y., Lee, H. S., Choi, J. H., Kim,
D. H., Park, S.-H. and Park, H. J. (2011). Effect of shear rate on structural, mechanical, and barrier
properties of chitosan/montmorillonite nanocomposite film. Journal of Applied Polymer Science, 119(5): 2742 –2749.
24.
Oguzlu,
H. and Tihminlioglu, F. (2010). Preparation and barrier
properties of chitosan-layered silicate nanocomposite films. Macromolecule
Symposium, 298 (1): 91 – 98.
25.
Ludueña,
L., Morán, J. and Alvarez, V. (2015). Biodegradable polymer/claynanocomposites. in eco-friendly polymer nanocomposites, 75th
Edition, V. K. Thakur and M. K. Thakur, Eds. Springer India. pp. 109 –135.
26.
Liu, X., Hu, M. and Hu, Y. (2008). Chemical composition and surface charge properties of
montmorillonite. Journal of Central
South University Technology, 15(2): 193 – 197.
27.
Zhu, J., Tian, M., Zhang, Y., Zhang, H. and Liu., J. (2015). Fabrication of a novel ‘loose’ nanofiltration membrane by facile blending
with Chitosan–Montmorillonite nanosheets for dyes purification. Chemical Engineering
Journal, 265: 184 – 193.
28.
Liu, B., Wang, X., Yang, B. and Sun, R. (2011). Rapid modification of
montmorillonite with novel cationic Gemini surfactants and its adsorption for
methyl orange. Materials Chemistry and
Physics, 130(3): 1220 – 1226.
29.
Huskić,
M., Brnardić, I., Žigon, M. and Ivanković, M. (2008). Modification of montmorillonite by quaternary polyesters. Journal of Non Crystalline Solids, 354(28): 3326 – 3331.
30.
Jiratumnukul,
N., Manowanna, P. and Premmag, N. (2012). Modified bentonite clay
in UV-curable coating applications. Engineering Journal, 16(3): 13 – 18.
31.
Wang, Y., Jiang, Z., Li, H., and Yang, D. (2010). Chitosan membranes
filled by GPTMS-modified zeolite beta particles with low methanol permeability
for DMFC. Chemistry Engineering Process, Process Intensification, 49(3): 278 – 285.
32. Trisnawati, E., Andesti, D. and Saleh, A. (2013). Pembuatan kitosan dari limbah cangkang kepiting sebagai bahan
pengawet buah duku dengan variasi lama pengawetan. Jurnal Teknologi Kimia, 19(2): 17 – 26.
33.
Wang, Y., Yang, D., Zheng, X., Jiang, Z. and Li, J. (2008). Zeolite beta-filled
chitosan membrane with low methanol permeability for direct methanol fuel cell. Journal Power Sources, 183(2): 454 – 463.
34.
Tohidian,
M., Ghaffarian, S. R., Shakeri, S. E., Dashtimoghadam, E. and Hasani-Sadrabadi,
M. M. (2013). Organically modified montmorillonite and
chitosan-phosphotungstic acid complex nanocomposites as high performance
membranes for fuel cell applications.Journal of Solid State Electrochemistry, 17(8): 2123 – 2137.
35.
Cui, Z., N. Li, X. Zhou, C. Liu, J. Liao, S. Zhang and W. Xing. (2007). Surface-modified
Nafion membrane by casting proton-conducting polyelectrolyte complexes for
direct methanol fuel cells. Journal of Power Sources, 173(1): 162 – 165.
36.
Kumari,
S. and Rath, P. K. (2014). Extraction and characterization of chitin and chitosan from
(Labeo rohit) fish scales. Procedia Materials Science, 6: 482 – 489.
37.
Duan, J. K., Shao, S. X., Jiang, L., Li, Y., Jing, P. K. and Liu, B. P. (2011). Nano-attapulgite functionalization by silane modification for preparation
of covalently-integrated epoxy/TMPTMA Nanocomposites. Iranian Polymer
Journal, 20(11): 855 – 872.
38.
Wu, H., Zheng, B., Zheng, X., Wang, J., Yuan, W. and Jiang, Z. (2007). Surface-modified Y zeolite-filled chitosan membrane for direct methanol
fuel cell. Journal of Power
Sources, 173(2): 842 – 852.
39.
Dos Santos,
B. R., Bacalhau, F. B., Pereira, T. D. S., Souza, C. F. and Faez, R. (2015). Chitosan-montmorillonite microspheres: A sustainable fertilizer delivery
system. Carbohydrate Polymer, 127: 340 – 346.
40.
Wang, S. F., Shen, L., Tong, Y. J., Chen, L., Phang, I. Y., Lim, P. Q. and
Liu, T. X. (2005). Biopolymer chitosan/montmorillonite nanocomposites: Preparation and
characterization. Polymer Degradation and
Stability, 90(1): 123 – 131.
41.
Darder,
M., Colilla, M. and Ruiz-Hitzky, E. (2005). Chitosan-clay
nanocomposites: Application as electrochemical sensors. Applied Clay Science, 28(1–4): 199 – 208.
42.
Madaeni,
S. S., Amirinejad, S. and Amirinejad, M. (2011). Phosphotungstic acid doped poly(vinyl alcohol)/poly(ether sulfone) blend
composite membranes for direct methanol fuel cells. Journal of Membrane Science, 380(1–2): 132 – 137.
43.
Gosalawit, R., Chirachanchai,
S., Shishatskiy, S. and Nunes, S. P. (2008). Sulfonated montmorillonite/sulfonated poly(ether ether
ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells
(DMFCs). Journal of Membrane Science, 323(2): 337 – 346.
44.
Lee, S. H., Choi, S. H., Gopalan, S. A., Lee, K. P. and Anantha-Iyengar,
G. (2014). Preparation of new self-humidifying composite membrane by incorporating
graphene and phosphotungstic acid into sulfonated poly(ether ether ketone)
film. International Journal of Hydrogen Energy, 39(30): 17162 –17177.
45.
Xiao, Y., Xiang, Y., Xiu, R. and Lu, S. (2013). Development of cesium
phosphotungstate salt and chitosan composite membrane for direct methanol fuel
cells. Carbohydrate Polymer, 98(1): 233 – 240.
46.
Cui, Z., Liu, C., Lu, T. and Xing, W. (2007). Polyelectrolyte
complexes of chitosan and phosphotungstic acid as proton-conducting membranes
for direct methanol fuel cells. Journal of Power Sources, 167(1): 94 – 99.
47. Lin, H., Zhao, C. Ma, W., Shao, K., Li, H., Zhang, Y. and Na, H. (2010). Novel hybrid polymer electrolyte membranes prepared by a
silane-cross-linking technique for direct methanol fuel cells. Journal of Power
Sources, 195(3): 762 – 768.