Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 675 - 689

DOI: https://doi.org/10.17576/mjas-2017-2103-17

 

 

 

CORRELATION BETWEEN PROTON CONDUCTIVITY, HYDROPHILICITY, AND THERMAL STABILITY OF CHITOSAN/MONTMORILLONITE COMPOSITE

MEMBRANE MODIFIED GPTMS AND THEIR PERFORMANCE IN DIRECT METHANOL FUEL CELL

 

(Hubungan antara Kekonduksian Proton, Sifat Hidrofil dan Kestabilan Termal atas Membran Komposit Kitosan/Montmorillonit dengan Modifikasi GPTMS dan Prestasinya dalam Sel Bahan Api Metanol Langsung)

 

Mochammad Purwanto1,2, Lukman Atmaja2*, M.T. Salleh1, Mohamad Azuwa Mohamed1, Juhana Jaafar1, Ahmad Fauzi Ismail1, Mardi Santoso2, Nurul Widiastuti2

 

1Advanced Membrane Technology (AMTEC) Research Centre,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

2Department of Chemistry,

 Institut Teknologi Sepuluh Nopember, ITS Sukolilo, Surabaya 60111, Indonesia

 

*Corresponding author: lukman_at@chem.its.ac.id

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

Chitosan based inorganic hybrid membrane is a promising organic–inorganic hybrids for the development of high performance proton exchange membrane (PEM). The immobilization of modified montmorillonite (MMT) using GPTMS within chitosan matrix would possess superior physicochemical characteristics due to more hydrogen bonding formation introduced by GPTMS. Therefore, higher number hydrogen bond formation can be expected in Ch/MMT-GPTMS membrane rather than in pure Ch membrane. A fully hydrated membrane at elevated temperatures is desirable for efficient proton conduction in the membranes. It remains a critical challenge to maintain proper hydration of the membranes for the operation of the direct methanol fuel cell (DMFC). The microstructure obtained by SEM for composites showed that filler was successfully incorporated and relatively well dispersed in the chitosan polymer matrix. The role of surface modification of MMT filler by GPTMS have  increase the functional group that can form hydrogen bonding which suitable for interaction with water. High water uptake is favourable for high performance PEM to facilitate great numbers of protons hopping and diffusion through the membrane. In addition, greater hydrogen bonding formation would lead to the tighter packing of composite membrane, resulting in higher bonding strength and higher thermal resistance. The Ch/MMT-GPTMS composite membrane with 5 wt% filler loading exhibited the best proton conductivity are 4.66 mScm-1, with water contact angle value of 64.73o. A maximum power density of 0.24 mWcm-2 was obtained with a 2M methanol feed. The relationship of water contact angle, water upake, membrane swelling, thermal stability, and proton conductivity shown suitable trend, it means that all quality of them are related to the hydrophilicity properties.

 

Keywords:  chitosan, montmorillonite, (3-glycidoxypropyl) trimethoxysilane, direct methanol fuel cel

 

Abstrak

Kitosan berasaskan membran hibrid tak organik ialah kacukan organik-tak organik yang menjanjikan pembangunan pertukaran proton membran berprestasi tinggi (PEM). Montmorillonit (MMT) pegun diubahsuai menggunakan GPTMS dalam matriks kitosan akan mempunyai ciri-ciri fiziko-kimia unggul kerana lebih pembentukan ikatan hidrogen yang diperkenalkan oleh GPTMS. Oleh itu, pembentukan jumlah ikatan hidrogen yang lebih tinggi boleh dijangka pada membran Ch/MMT-GPTMS bukannya pada membran Ch tulen. Setiap membran terhidrat sepenuhnya pada suhu tinggi adalah diperlukan untuk pengaliran proton cekap dalam membran. Ia kekal sebagai cabaran kritikal untuk mengekalkan penghidratan membran untuk operasi sel bahan api metanol langsung (DMFC). Mikrostruktur diperolehi melalui SEM untuk komposit menunjukkan bahawa pengisi telah berjaya digabungkan dan tersebar di dalam matriks polimer kitosan. Peranan pengubahsuaian permukaan MMT pengisi oleh GPTMS telah meningkatkan kumpulan berfungsi yang boleh membentuk ikatan hidrogen yang sesuai untuk berinteraksi dengan air. Pengambilan air yang tinggi adalah baik untuk PEM yang berprestasi tinggi bagi membantu proton bergerak dan penyebaran melalui membran. Di samping itu, pembentukan ikatan hidrogen yang lebih besar akan membawa kepada pembungkusan membran komposit yang lebih ketat, menyebabkan kekuatan ikatan dan rintangan haba yang lebih tinggi. Membran komposit Ch/MMT-GPTMS dengan 5% berat pengisi mewujudkan kekonduksian proton terbaik iaitu 4.66 mScm-1, dengan nilai sudut sentuhan air ialah 64.73o. Ketumpatan kuasa maksimum ialah 0.24 mWcm-2 telah diperolehi dengan suapan 2M metanol. Hubungan sudut sentuhan air, serapan air, pengembangan membran, kestabilan haba, dan kekonduksian proton menunjukkan corak yang sesuai, ia bermaksud semua kualiti yang terhasil adalah berkaitan sifat hidrofilik.

 

Kata kunci:  kitosan, montmorillonit, (3-glisidoksipropil) trimetoksisilana, sel bahan api metanol langsung

 

References

1.       Yuan, T., Pu, L., Huang, Q., Zhang, H., Li, X. and Yang H. Yang. (2014). An effective methanol-blocking membrane modified with graphene oxide nanosheets for passive direct methanol fuel cells. Electrochimica Acta, 117: 393 – 397.

2.       Sadrabadi, M. M. H., Dashtimoghadam, E., Majedi, F. S., Kabiri, K., Solati-Hashjin, M. and Moaddel, H. (2010). Novel nanocomposite proton exchange membranes based on Nafion and AMPS-modified montmorillonite for fuel cell applications. Journal of Membrane Science, 365(1–2): 286 –293.

3.       Cui, Z., Xing, W., Liu, C., Liao, J. and Zhang, H. (2009). Chitosan/heteropolyacid composite membranes for direct methanol fuel cell. Journal of Power Sources, 188(1): 24 – 29.

4.       Jung, D. H., Cho, S. Y., Peck, D. H., Shin, D. R. and Kim, J. S. (2003). Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell. Journal of Power Sources. 118(1-2): 205 –  211.

5.       Lu, J. L., Fang, Q. H., Li, S. L. and Jiang, S. P. (2013). A novel phosphotungstic acid impregnated meso-Nafion multilayer membrane for proton exchange membrane fuel cells. Journal of Membrane Science,  427: 101 – 107.

6.       Lufrano, F., Baglio, V., Staiti, P., Antonucci, V., and Arico, A. S. (2013). Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 243: 519 –534.

7.       Wang J. and Wang, L. (2014). Preparation and properties of organic-inorganic alkaline hybrid membranes for direct methanol fuel cell application. Solid State Ionics,  255: 96 – 103.

8.       Younes, I., Ghorbel-Bellaaj, O., Nasri, R., Chaabouni, M., Rinaudo, M. and Nasri, M. (2012). Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochemistry, 47(12): 2032 – 2039.

9.       Sagheer, F. A., Al-Sughayer, M. A., Muslim, S. and Elsabee, M. Z. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymer, 77(2): 410 – 419.

10.    Chatterjee, S., Adhya, M., Guha, A. K. and Chatterjee, B. P. (2005). Chitosan from Mucor rouxii: production and physico-chemical characterization. Process Biochemistry, 40(1): 395 – 400.

11.    Krishna Rao, K. S. V., Ramasubba Reddy, P., Lee, Y.-I, and Kim, C. (2012). Synthesis and characterization of chitosan–PEG–Ag nanocomposites for antimicrobial application. Carbohydrate Polymer, 87(1): 920 – 925.

12.    Croisier, F. and Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal,  49(4): 780 –792.

13.    Bhattacharyya, R. and Ray, S. K. (2014). Micro- and nano-sized bentonite filled composite superabsorbents of chitosan and acrylic copolymer for removal of synthetic dyes from water. Applied Clay Science, 101: 510 – 520.

14.    Lewandowska, K., Sionkowska, A., Kaczmarek, B. and Furtos, G. (2014). Characterization of chitosan composites with various clays. International  Journal of Biological Macromolecules, 65: 534 – 541.

15.    Liu, Y., Yang, S. and Niu, W. (2013). Simple, rapid and green one-step strategy to synthesis of graphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for square-wave voltammetric detection of methyl parathion. Colloids Surface B: Biointerfaces. 108: 266 – 270.

16.    Olad, A. and Farshi Azhar, F. (2014). The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceramic International, 40(7): 10061 – 10072.

17.    El Ichi, S., Zebda, A., Alcaraz, J. P., Laaroussi, A., Boucher, F., Boutonnat, J., Reverdy-Bruas, N.,  Chaussy, D., Belgacem, M. N., Cinquin, P. and Martin, D. K. (2015). Bioelectrodes modified with chitosan for long-term energy supply from the body. Energy and Environmental Science, 8(3): 1017 –1026.

18.    Sabaa, M. W., Abdallah, H. M., Mohamed, N. A. and Mohamed, R. R. (2015). Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites. Materials Science and Engineering C, 56: 363 – 373.

19.    Petersson, L., Kvien, I. and Oksman, K. (2007). Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composite Science Technology, 67(11–12): 2535 –2544.

20.    Mohamed, M. A., Salleh, W. N. W., Jaafar, J., Ismail, A. F., Mutalib, M. A, Sani, N. A. A., Asri, S. E. A. M. and Ong, C. S. (2016). Physicochemical characteristic of regenerated cellulose/N-doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation. Chemical Engineering Journal, 284: 202 – 215.

21.    Grigoriadi, K., Giannakas, A., Ladavos, A. K. and Barkoula, N. M. (2015). Interplay between processing and performance in chitosan-based clay nanocomposite films. Polymer Bulletin, 72(5): 1145 – 1161.

22.    Huang, Y., Huang, J., Cai, J., Lin, W., Lin, Q., Wu, F. and Luo, J. (2015). Carboxymethyl chitosan/clay nanocomposites and their copper complexes: Fabrication and property. Carbohydrate Polymer, 134: 390 – 397.

23.    Hong, S. I., Lee, J. H., Bae, H. J., Koo, S. Y., Lee, H. S., Choi, J. H., Kim, D. H., Park, S.-H. and Park, H. J. (2011). Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film. Journal of Applied Polymer Science, 119(5): 2742 –2749.

24.    Oguzlu, H. and Tihminlioglu, F. (2010). Preparation and barrier properties of chitosan-layered silicate nanocomposite films. Macromolecule Symposium, 298 (1): 91 – 98.

25.    Ludueña, L., Morán, J. and Alvarez, V. (2015). Biodegradable polymer/claynanocomposites. in eco-friendly polymer nanocomposites, 75th Edition, V. K. Thakur and M. K. Thakur, Eds. Springer India. pp. 109 –135.

26.    Liu, X., Hu, M. and Hu, Y. (2008). Chemical composition and surface charge properties of montmorillonite. Journal of Central South University Technology, 15(2): 193 – 197.

27.    Zhu, J., Tian, M., Zhang, Y., Zhang, H. and Liu., J. (2015). Fabrication of a novel ‘loose’ nanofiltration membrane by facile blending with Chitosan–Montmorillonite nanosheets for dyes purification. Chemical Engineering Journal, 265: 184 – 193.

28.    Liu, B., Wang, X., Yang, B. and Sun, R. (2011). Rapid modification of montmorillonite with novel cationic Gemini surfactants and its adsorption for methyl orange. Materials Chemistry and Physics, 130(3): 1220 – 1226.

29.    Huskić, M., Brnardić, I., Žigon, M. and Ivanković, M. (2008). Modification of montmorillonite by quaternary polyesters. Journal of Non Crystalline Solids, 354(28): 3326 – 3331.

30.    Jiratumnukul, N., Manowanna, P. and Premmag, N. (2012). Modified bentonite clay in UV-curable coating applications. Engineering Journal, 16(3): 13 – 18.

31.    Wang, Y., Jiang, Z., Li, H., and Yang, D. (2010). Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC. Chemistry Engineering Process, Process Intensification, 49(3): 278 – 285.

32.    Trisnawati, E., Andesti, D. and Saleh, A. (2013). Pembuatan kitosan dari limbah cangkang kepiting sebagai bahan pengawet buah duku dengan variasi lama pengawetan. Jurnal Teknologi Kimia, 19(2): 17 26.

33.    Wang, Y., Yang, D., Zheng, X., Jiang, Z. and Li, J. (2008). Zeolite beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. Journal Power Sources, 183(2): 454 – 463.

34.    Tohidian, M., Ghaffarian, S. R., Shakeri, S. E., Dashtimoghadam, E. and Hasani-Sadrabadi, M. M. (2013). Organically modified montmorillonite and chitosan-phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications.Journal of Solid State Electrochemistry, 17(8): 2123 – 2137.

35.    Cui, Z., N. Li, X. Zhou, C. Liu, J. Liao, S. Zhang and W. Xing. (2007). Surface-modified Nafion membrane by casting proton-conducting polyelectrolyte complexes for direct methanol fuel cells. Journal of Power Sources, 173(1): 162 – 165.

36.    Kumari, S. and Rath, P. K. (2014). Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Materials Science, 6: 482 – 489.

37.    Duan, J. K., Shao, S. X., Jiang, L., Li, Y., Jing, P. K. and Liu, B. P. (2011). Nano-attapulgite functionalization by silane modification for preparation of covalently-integrated epoxy/TMPTMA Nanocomposites. Iranian Polymer Journal,  20(11): 855 – 872.

38.    Wu, H., Zheng, B., Zheng, X., Wang, J., Yuan, W. and Jiang, Z. (2007). Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell. Journal of Power Sources, 173(2): 842 – 852.

39.    Dos Santos, B. R., Bacalhau, F. B., Pereira, T. D. S., Souza, C. F. and Faez, R. (2015). Chitosan-montmorillonite microspheres: A sustainable fertilizer delivery system. Carbohydrate Polymer, 127: 340 – 346.

40.    Wang, S. F., Shen, L., Tong, Y. J., Chen, L., Phang, I. Y., Lim, P. Q. and Liu, T. X. (2005). Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization. Polymer Degradation and Stability, 90(1): 123 – 131.

41.    Darder, M., Colilla, M. and Ruiz-Hitzky, E. (2005). Chitosan-clay nanocomposites: Application as electrochemical sensors. Applied Clay Science, 28(1–4): 199 – 208.

42.    Madaeni, S. S., Amirinejad, S. and Amirinejad, M. (2011). Phosphotungstic acid doped poly(vinyl alcohol)/poly(ether sulfone) blend composite membranes for direct methanol fuel cells. Journal of Membrane Science, 380(1–2): 132 – 137.

43.    Gosalawit, R., Chirachanchai, S., Shishatskiy, S. and Nunes, S. P. (2008). Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). Journal of Membrane Science, 323(2): 337 – 346.

44.    Lee, S. H., Choi, S. H., Gopalan, S. A., Lee, K. P. and Anantha-Iyengar, G. (2014). Preparation of new self-humidifying composite membrane by incorporating graphene and phosphotungstic acid into sulfonated poly(ether ether ketone) film. International Journal of Hydrogen Energy, 39(30): 17162 –17177.

45.    Xiao, Y., Xiang, Y., Xiu, R. and Lu, S. (2013). Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells. Carbohydrate Polymer, 98(1): 233 – 240.

46.    Cui, Z., Liu, C., Lu, T. and Xing, W. (2007). Polyelectrolyte complexes of chitosan and phosphotungstic acid as proton-conducting membranes for direct methanol fuel cells. Journal of Power Sources, 167(1): 94 – 99.

47.    Lin, H., Zhao, C. Ma, W., Shao, K., Li, H., Zhang, Y. and Na, H. (2010). Novel hybrid polymer electrolyte membranes prepared by a silane-cross-linking technique for direct methanol fuel cells. Journal of Power Sources, 195(3): 762 – 768.

 




Previous                    Content                    Next